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The purpose of this note is to state and prove the following theo-

rem.

Theorem. Consider the Hill's equation

(1) y" +[a + q(t)]y = 0,

where q(t+ir) =q(t), and q(t) is bounded. Let X, denote the ith eigenvalue

corresponding to which a solution of (1) has period t, and X' those cor-

responding to which (1) has a solution of period 2ir. It is well known [l]

that for these eigenvalues

Xo < Ai" Ú \l < Xi ^ X2 < X8' Û \í < X3 á X4 < • • •

and for all X in the intervals

(2) (Xo, X/), (Xa, XO, (X2, XO, (X/, X3), • • •

has only bounded solutions. For X outside those intervals unbounded solu-

tions occur. These intervals (— », Xo), (X/, X2), (Xi, X2), (X/, X/) • • •

are known as the instability intervals. Then if q(t) has m continuous

derivatives it follows that

X24 — X2 - - •(—)

as k—>K>, and similarly for Xá— X^-i-

This result was previously proved in [2] for q(t), which are even

in /. The following proof lifts that restriction.

The proof is similar to the one given in [2]. The solutions of (1)

can be represented by

y = A(t) sin <b(t),       y' = (X + q(t))ll2A(t) cos <b(t).

From these it follows that

(3) <*>'(/) = (X + 9M)1'2 +       *®,„ sin 2<6(/),
4(X + q(t))

(4)
A'(t) q'(t) cos2 <*>(/)

A(t) 2(X+ «(/))
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For sufficiently large X, A must be an exponential function and can-

not vanish. For solutions of period w we require that

y(0) = y(w),       y'(0) = y'(rc).

From this one can conclude that

4>(t) = 0(0) + 2*x,        A(r) = A(0).

Similarly for solutions of period 27r

y(0) = - y(V),        y'(0) = - /(»)

so that

0(tt) = 0(0) + (2* + 1)tt,        ¿(t) = i4(0).

From (3) and (4) we then obtain

(5) kr =  f V + c(0)1/2¿¿ +  f ' „/.^ sin 2*W*'
Jo J o   4(X + q(t))

(6) O-ifä^A
2 J o       X + j(0

0(0) and X are unknown, but once 0(0 is determined from (3), they

can be determined from (5) and (6). By virtue of the fact that only

(20) occurs in (5) and (6), one will determine for every k two X's and

two 0(0)'s. Incaseg(0 is even one finds for 0(0) the solutions 0(0) =0,

0(0) =ir/2. The two X's will be close. Asymptotically (4) shows that

\m = k + O
(i)

for large k. When q(t) has m continuous derivatives it follows from

(4), by integrations by parts, that

f    -—-sin 20(Od/ = o (-J = o (-J.
Jo    4(X + ?(0) Vx<»+i>/2/ U-+V

By taking the difference of the two equations of type (4) correspond-

ing to the same value of k one finds that

f   (Xa + q(t)yi*dt -  f   (\ik-i + q(t))lltdt = o(-)
Jo Jo \ km+l/

and an application of the mean value theorem shows that

X2k — Xik-i — o (- J
\km-x/
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which proves the theorem.
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A CLASS OF INTEGRAL EQUATIONS INVOLVING
ULTRASPHERICAL POLYNOMIALS AS KERNEL

K. N. SRIVASTAVA

Introduction. In deriving a solution of a certain aerodynamical

problem, Ta Li [l] was led to a general class of integral equations,

each of which has, as its kernel, a Chebyshev polynomial of first kind

divided by the square root of the difference of two squares. Ta Li has

obtained an exact solution of each of these singular integral equations.

The solution is given in the form of a singular integral involving

Chebyshev polynomial of first kind.

In this note the author obtains an inversion formula for a singular

integral transform involving ultraspherical polynomials.

Ultraspherical polynomials. The ultraspherical polynomial of «th

degree is denoted by C\(x). It is defined as the polynomial solution

of the differential equation [2 ]

(1) (x2 - \)y"(x) + (2X + l)xy'(x) - n(n + 2X)y(x) = 0,

with the initial condition y(l) = 1. Writing

(2) y(x) = xh(x2 - 1),

where

(3) -a:when n is even,

when n is odd,

we find, after letting

(4) / = x2 - 1,

the following differential equation for z(t) :
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