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This paper is concerned with the Differentiability Theorem for

linear symmetric hyperbolic systems of partial differential equations

of the first order. In [l] Friedrichs derives the existence and unique-

ness of the strong solution of the Cauchy problem for these systems

by using energy inequalities and orthogonal projections. His main

tool is the integral mollifier. However, to show that the solution

possesses square integrable (strong) derivatives, provided the data

determining it is sufficiently smooth, he uses the method of approxi-

mations by finite differences. In a different approach, Lax [2] intro-

duces spaces with norms of negative order, such that his solution is

already equipped with the necessary square integrable derivatives.

We shall present here a direct proof of the strong differentiability

of the solution by applying the existence theorem to the over-deter-

mined system resulting from differentiating the given system with

respect to all the space variables.

The problem of the strong differentiability of the solution is of

particular importance in light of Sobolev's lemma [3], which states

that a function possesses continuous derivatives in an appropriate

domain, provided it possesses there a sufficient number of square

integrable derivatives.

Let u= (ui, • • • , un) denote a vector function of n elements in the

m+1 independent variables (t, x) = (t,xi, • • • ,xm). Ai, t = l, • • • ,m,

are symmetric «X« matrices with sufficiently continuously differ-

entiable elements. B is an nXn matrix with sufficiently continuously

differentiable elements. The domain R is the infinite slab between

the two surfaces 5: t = 0 and T: t=l.

The given system of equations is

m

(1) Eu m ut + Z AíuXí + Bu=f.
i=l

The given data on 5 is

(2) Su ms u(0, x) = 4>(x).
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In the following, a vector function will be called smooth if its ele-

ments possess a sufficient number of continuous derivatives for the

purpose at hand, and have bounded support in the x-variables, i.e.,

vanish for sufficiently large |x| ss(x\+ • • • +3C2,)1/2.

We say that u has a strong derivative with respect to an inde-

pendent variable y in the domain R, if u has a square integrable y-

derivative in R, i.e., if there exists a sequence of smooth vector func-

tions Uk whose L2 limit is u and such that the sequence (uk)v also

possesses an L2 limit. This L2 limit is called the strong derivative of u

with respect to y.2 We define m as a strong solution of (1) with data

(2) if there exists a sequence of smooth vector functions ur, such that

m is the L2 limit of ur, f the L2 limit of Eur in R, and <p the L2 limit of

Sur on 5.

The Differentiability Theorem. IffEL2 with strong first order

x-derivatives in R, and (¡>EL2 with strong first order x-derivatives on S,

then the strong solution u of (1) with data (2), possesses in R strong first

order derivatives with respect to all the variables t and x.

Note that / need not be strongly differentiable with respect to /.

We shall derive the strong differentiability of u with respect to the

^-variables and from (1) then clearly follows the strong differenti-

ability of u with respect to /.

Replacing u by e-x'w we may assume that B is sufficiently positive,

i.e.,
m

Eu = ut+2Z AiuXi + (XI + B)u,
j—i

where X is a positive constant as large as we please and / is the

identity matrix.

U will denote a vector function with (m + \)n elements

U=(Ui, • • • , £/(m+i)n). The inner product is defined by

(17, V) = jj    (UiVi +  ■ ■ ■ +  U^DnV{m+i)n)dtdx

and the norm ||£/||2 = (7J, U).

3C is the Hubert space obtained by the completion in R of smooth

vector functions U under this norm.

3Cs is the corresponding space on 5 with inner product

(U, V)s = f (UiVi + ■ ■ ■ + l7(M+1)„VWi),)á*
J s

and norm || U\\s=(U, U)s-

* For a detailed account of these function spaces, see Lax [2 ] and Nirenberg [3],
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3Cr is the corresponding space on T with inner product (U, V)t

and norm || £/||r.

Let u = («i, • • • , un) be a vector function with elements in L2 and

strong «-derivatives in R. We define u' as the vector with(m+l)n

elements

«' = («j, ••-,«„, (mi)»p («»)*!,   •   *    *   ,   («0« » W%).

i.e., w' is composed of the elements of u and all their «-derivatives.

Clearly u'QK. The vectors u' form in R a Hubert space X which is

a closed subspace of 3C. The vectors Su' = u'(0, x) resulting from vec-

tors Su with square integrable «-derivatives on S form a space Xs

which is a closed subspace of 3Cs. Similarly the vectors Tu' = u'(l, x)

form a space Xt which is a closed subspace of 3Cr.'

We consider the overdetermined system of equations

(3)

Eu=f

(Eu)Xl = fx,

(4) Su = <b, Suxi = <pXl, • • • , SuXm = <bx.

Note that we do not differentiate the equation Eu =/with respect to t.

The system (3)-(4) can be written as

Su' = <j>\

(this defines the operator £')

where

(5) E'

Ai =

d     "      a
+ Z^.' — + xr + B'

3/

o

01

which is symmetric.

B' is an (m+l)nX(m + l)n matrix and I' is the unit matrix.

u' is a strong solution of (3)-(4) if there exists a sequence of

smooth vector functions u[ such that
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II«/ - «Il -* o
\\E'ul -/'ll-O,
11«,' - *'||s-»0,       asi-^ ».

The following estimates for smooth vector functions U, are classi-

cal and are deduced in the papers by Friedrichs [l] and by Lax [2].

For any given k>0 we can choose X in (5) large enough such that

(6) k\\u\\* è (U, E'U) + IN*

and if (£')* denotes the adjoint of E', then

(7) k\\u\\2ï(U,(E')*U) + \\u\\2T

and if ko = k — 1 then

(8) ¿„iic/iráii£'t/ii2+iit/iii,

(9) MMfálKWf+ 11*
Specifically it follows for smooth v' that

(10) ¿o|kir^||2iV||2-f-|k||s,

di) »JMI'áll^vll' + lMlV
From the definition of E' in (5) it follows that

(12) E'v' = (Ev)'.

However, (E')*v' is not necessarily equal to (E*v)', where E* denotes

the adjoint of E.

We can write

(13) (£')V = (E*v)' + CV,

where C is an (m + i)nX(nt+l)n matrix whose elements depend on

the elements of Ai and B and their derivatives, but are independent

ofX.
The operator (£*)' is defined by the relationship

(14) (£*)V = (E*v)'.

Hence (E*)'v'= (E')*v'-C'v'.

The equivalent of (11) for (E*)' is:

(15) ko\\vfè\\(E*)'vt + \\vfr.
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There exists a constant 7>0 such that ||CV||2g7||z;'|[2. Putting in

(15) feo = 47 and using (14) it follows that

(16) 4||CV||2 g 47|M|2 g \\(E*v)f + \\vfT.

We introduce the space ÍFC3C. w' belongs to ï if there exists a

sequence of smooth vector functions w{ and vector functions g' Q X,

4>'QXS such that

||w' - w/||-»0,

\\Ewi -g'||->0,

\\wl -^||fl-»0,        as i -> co.

This extends the definition of the operators E' and 5 to operate on

functions w'Q'S:

E'w' = (Ew)' = g',

Sw' = f.

Inequality (10) continues to hold for functions w'Q'S.

We introduce the space 3CX which is the product space XXXs

whose elements are all the pairs \w', \f/'} ; w'QX, i¡/QXs. The inner

product in 3CX is defined by

({»/,*/}, {wi,H}) = (w{,wi) + (H,H)a

and the norm ||{«/, ^'}||2 = ||w/||2+||'/''lls-
SFX denotes the subspace of Xx whose elements are all the pairs

{(Ew)', Sw'} with w'Gï. It follows from (10) that £FX is a closed sub-

space of 3CX. It is our purpose to show that ïx= 3CX. This will then

complete the proof. We shall use the projection theorem. Suppose

that the pair \h', a'} QXX is orthogonal to the whole space ïx, i.e.,

((Ew)', h') + (w', a')s = 0   for all w' Q 5\

We will then show that h' = 0 and <r' = 0 and hence ííx=3Cx. If we

restrict w' to vector functions in ï with Sw' = 0 then ((Ew)', h')=0.

The main problem is then to prove from this that h' = 0. Suppose

this is done. We then restrict w' to a sequence of smooth functions

which approach a' on 5. It follows that cr' = 0.

We introduce the mollifiers Jt and J*. Let j(t, x) be an infinitely

differentiate function ; j(t, x) 2:0; j(t, x) = 0 outside the cube — 1 g/

gl, -lgx.-gl and
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j(t, x)dtdx = 1

1     r r    (t-t+2t   x - x\
Jcq==7^Jj J v—;— ' ~~r)q{t> *)dm'

i   re (t-t + 2t x-x\

JtU  =   (J,Ui,   •   •   ■  , J(U(.m+l)n),

J*U = (J*Ui, ■ ■ ■ ,J*Uim+i)n).

If Z7G3C then, as is well known,

||7e{7 - Z/|| -»0

||7*l7- U\\-+0       aSi-»0.

The mollifiers J, and J* commute in the infinite slab R with the

jc-derivatives. Specifically we have for w'E3C, Jew' = (Jtw)' and

J*w' = (J*w)'.
Jcw' and Jtw' are continuously differentiate functions which

together with their derivatives are finitely square integrable in R.

Hence Jtw' and J*w' satisfy (10) and (11). Furthermore Jfw' and

J*w' vanish in a neighborhood of 7" and S, respectively. Hence we have

((EJ*w)',h') = 0 for all w' E X. Therefore ((EJ*w)',h') = (E'(J*w)',h')

= (E'J*w', h') = (w', (E'J*)*h')=0, where (E'J*)* is the adjoint
integral operator of E'J?. From Friedrichs' lemma [2, Lemma 14],

it follows that

\\(E'J*)*U - (£')*/t<7||2 -+ 0       as e-> 0.

Hence

(17) (V, (E')*J<h') -* 0       for all w' E K.

Since h' is fixed we can consider (17) as a sequence of linear

bounded functionals of w'. This sequence converges for all w'EX..

Therefore the norms of these functionals are uniformly bounded by

a constant M. Hence, choosing w'=(E*Jth)', we have:

M\\(E*Jth)'\\^ ((E*Jth)', (E')*Jth') = \\(E*Jth)'\\2 + ((E*Jch)', C'Jth')

^ \\\(E*Jth)'\\2.

(The last inequality follows from (16).) Hence

(18) \\(E*Jth)'\\^2M.

Therefore (E*Jth)' is a sequence of functions in 3C with uniformly

I



1963] SOLUTIONS OF SYMMETRIC HYPERBOLIC SYSTEMS 969

bounded norms. Now, from a sequence of functions with uniformly

bounded norms we can choose a subsequence which converges

weakly. From the Banach-Sachs theorem, see Riesz-Nagy [4, §38],

it follows that from this weakly convergent sequence we can select a

subsequence whose arithmetic means converge strongly. Since (£*)'

is a linear operator, we have a sequence of continuously differentiable

vector functions v[ in X which are the arithmetic means of a subse-

quence of J,h', such that (E*)'v¡ (=(£*»¡)') converges strongly.

Since Jth' vanishes on iwe have that ||t\'||r = 0. Furthermore

(19) ||»/ -A'||-0.

We denote the strong limit of (E*Vi)' by er. Substituting e' for w' in

(17) we deduce that (e', (E')V)-»0. Furthermore

(V, (E')*v<) = (e', (E*Vi)') + (e', C'v¡) >t (/, (E*Vi)') - |||e'|| \\(E*v,y\\

-HMI-.
Hence e' = 0, i.e., ||(£*i\)'||->0. (15) implies that |K?||->0. From (19)
it now follows that h' = 0, which concludes the proof.

By repeated application of the Differentiability Theorem we de-

duce the higher order differentiability of the solution of (l)-(2), pro-

vided / and <p possess higher order derivatives.

Higher Order Differentiability Theorem. If r and s are non-

negative integers with s¿¡r and iff possesses in R all the strong deriva-

tives of the form DfDf] • • • Z)£», a^s, ct+ßx+ • ■ ■ +/3mgr, and if <p
possesses on S all the strong derivatives of the form Dx\ ■ • • DX™, then

the solution u of (l)-(2) possesses in R all the strong derivatives of the

form

dI'dÍI ••• Dt,       a' g j + 1,       a' + ßi + ■ ■ ■ + ßm g r.
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