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which proves the theorem.
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Introduction. In deriving a solution of a certain aerodynamical
problem, Ta Li [1] was led to a general class of integral equations,
each of which has, as its kernel, a Chebyshev polynomial of first kind
divided by the square root of the difference of two squares. Ta Li has
obtained an exact solution of each of these singular integral equations.
The solution is given in the form of a singular integral involving
Chebyshev polynomial of first kind.

In this note the author obtains an inversion formula for a singular
integral transform involving ultraspherical polynomials.

Ultraspherical polynomials. The ultraspherical polynomial of nth
degree is denoted by Cj(x). It is defined as the polynomial solution
of the differential equation [2]

(1) @2=1)y"(x) + (@ + Dy’ (®) — n(n + 2V)y(x) = 0,
with the initial condition y(1) =1. Writing

2 y(x) = 2°2(z* — 1),

where

(©)

> {0 when # is even,
T when # is odd,

we find, after letting
4 t=2x?—1,
the following differential equation for z(¢):
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4t + 12" + {26+ N+ 1) + 20+ 1}5

LR

where [£] denotes the positive integral part of £ The polynomial
solution of (5) satisfying 2(0) =1 is

[%] IT( + 1/2)22

(5] o

n—1
1] 2”‘1‘([———5——] + 2+ N+ 1) r+rx+1)

(t + 1)—5/2C:{(t + 1)112} -

(6)

= ®!

r([%] k4t 1) T2k + 20 4 1)

Replacing ¢ by x2—1 in (6), one finds the following lemma:

LEMMA 1. The ultraphserical polynomials Ch(x) defined by the differ-
ential equation (1) and the condition y(1) =1 can be written in the form

n
— |!IT(A 4 1/2)2%
2
CM\(=x) = -

(["; 1] + >\) IT(1/2)
e e R R

- ([-g—] - k) (2% + 2V)! (B}

where 8 is given by (3).

Y]

(7) is the expression of the ultraspherical polynomials most suita-
ble for our discussion.

Integral equations and their solutions. Consider the integral equa-
tions

A
. 1 Ca(u/0)ya(n)
(8) v mdu=fn(0), cc€l,n=123.--,
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where the integral is taken in the Riemann sense, = {o:c<o =<1},
¢>0 is a constant, and f,(c) is defined on I. It is assumed that

(a) —3<N<3,

(b) fa(1)=0,

(c) (d/do)[o™f.(0)] is piecewise continuous on I.
Condition (b) is necessary for y,(«) to remain finite on I. The same
condition implies that (d/do) [o"f,(c) | # O for otherwise f,(¢) = C-a—™,
C is a constant, which contradicts (b). We prove the following theo-
rem.

THEOREM. Given fn(¢) on I, satisfying the conditions (b) and (c),
the solution of (8) is given by

2 cos (m\) .

In(u) = — -
9)
( Xfl C:_l(u/v)d{v"fn(v)}
v D1(g2 — )2, [0, — A 151 — 02/6?)
where Ch(x), n=1, 2, 3,--+; —i<\<%, are ultraspherical poly-
nomsials.

We want to note in passing that when n=1, the solution of
U uyi(u)du
v (uZ —_ 0.2)1/2—)\

= ofl(a):

as obtained by the method given in [3] under the condition (a) is

uy\(u) = — ————2 cos () i[ful —v%(v) dv].

T du (v2 — u) 2

In the case fi(1) =0, this can be reduced to the form

- 2@ fl Co (w/v)d{v7fu(v)}

) = ———— g~ ’
. . 0B — e R a1 1 — 02/e?]
by writing

vdy 1
- — = d{(v’ - uz)uz-x}
(2 — w2+ 1— 22

and by integrating by parts. The differentiation with respect to % is
then carried out under the integral sign and by Kummer’s trans-
formation [4], we have

(v/a)~2 oFq[1, —A; 151 — 02/6?] = 1.
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It should be noted that condition (b) does not necessarily impose a
restriction on f,(¢). This will be shown in a later section. If we take
A=0, we get the results obtained by Ta Li for Chebyshev poly-
nomials.

As a preparation for the proof of the dual relation (8) and (9),
we have to establish a summation formula. It can be easily shown that
ifmz=1

(m)im — 1)1 2 " (=)T(m+ k+MNT(m+p— )
T(m + NT(@m — ) 10 pmo (m — E)l(m — p — 1)1(k) u)!
(t — 1)ktugn
(8 + p)!
= m Ry [—2m + 1, N+ 1;1;1 — 4],

(10)

and
(m)(m)! i i (=) Tm+Ek+X+ DT (m+p—N)
T(im+ N+ 1)T(m — \) 1m0 w0 (m — E)\(m — u)!(k)!(u)!
@t — V)ktugs
Skt w!
=t Fy[—2m, N+ 1; 151 — 4],

€4y

these results taken together can be written as
=)
=)=
o [n/E2] [n—zllﬁl =) ([”_‘2'1] tAF k) :

o CEETE)

% ([” ; 2] Tr x) ! (¢ — 1)*tegn

([" ; 1] - u) @ !
= f~I[n—1/2] 2F1[— [—’23.] - [”; 1], A 1511 - t].
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By Kummer’s transformation [4]

n n—1
—n—142] 2Fl|:_[—é-:l - [—-2——], A 15151 — t]

, n n—2
(13) = (3= zFl[l + [?] + [—2— ] —A1;1— ¢:|

= 220 oF [, =X 151 — o).

LEMMA 2. Let n be an integer Z2, then
n n—1
[51[5]
1‘(["— 1] A+ 1)1*([”_2] x+1>
2 2
L " — 1
(/2] [n1/2] (=) P([—Z—:I +E+2+ 1)
X > -
k=0 u=0
14 7.\,
" (EARD)
r([”_2]+ x+1>
2 # (t — 1)k+“t—"

(I

= /2> R [n, —\; 151 — ).

Proof of the dual relation. On the grounds of conditions (a), (b)
and (c) it is obvious that the integral (9) exists, and that the double

integral
A (L)

; 2cos(m\) ! \o
- A j; (u? — g?)1/2>

( , (%) dtono) )
X j:‘ vn—ﬁ—l(vz —_ u’)"“’" 2F1[n, -\ 1; 1 — v”/ﬁ] du

obtained by directly substituting (9) in (8), is convergent. This
double integral can be written as

(15)
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o 2cos<1rx> N fn—- f ()C’-—l(:)d{v"fu(v)}

D=1y — g2)l/2n

% du
(0 — w)VP GFi[n, —X; 151 — v2/0?]

Since the integrals are uniformly bounded and there are at most a
finite number of discontinuities of (d/dv)(v"f(v)) in the region
R {u +e<v=1
"lot+esus1

it is justifiable to interchange the order of integration in R. Thus we
obtain
2 cos (wA) 1 d{v"fa(v)}

J=————62]lim
T =0 J gpae VPRTL 2F1[n, -A1;1 - ”2/”2]

— Chw/e)Citi(uf)
xf., (w2

— 0.2)112—)\(”2 —_ u2)1/2+)‘

Because CX(u/0)C;2,(u/v) is continuous and finite in the interval
v=u=¢ and

v duz
f = 7/cos (w\),

(u2 — az)l/z—)‘(.uz — u2)1/2+)\

D)=

v
L (u2 — 02)1I2—)\(.02 —_ u2)1/2+k

the integral

exists, so that we can write

2 cos(m) f‘ d{vfu()}
T J v R e, N 51— (07/09)]

(D)=

v
Xf u
a (u2 —_ 02)1/2-—X(v2 — u2)ll2+k.

J=-

™

(16)

From Lemma 1 we have
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(L) (%)
g v
n

[—Z-]I[’-’—;] ID(1/24NT(1/2—N)

o ERED O
e () (o)
([%] -+) '(["—;—3] —4) 1 Gum D) IEE V!

EHN =N (=) at—ut)s
#)1w)! 2

Substituting (17) in (16), writing (#?—¢?) = (22—0?)x and making
use of the following Euler’s integral of the first kind

b

'(u2 —_ o.2)lc+)‘—ll2(.02 — u2)u—)\—l/2du2

(18)
72k + 22\) (2 — 2X)! (v — o2)mtk

B N TR

(16) reduces to

_ d{ofa(0)}
a9 7 f — F[n T o @/o'BO,

where t=92/¢? and

)]
ENIER
I R

2 2
CONNER SPp> [2]- k),([”_;_l] _u) 1) )

|

B() =

S

(t — 1)k+nt—u ]
(B + !
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By Lemma 2, we have
(21) B(t) = ¢/2=2 oF [n, —X; 151 — ¢].
Introducing (21) into (19) and using the relation
(22) 2 [—'ﬂ +o=mn,
one finds for n=2
1

J == a‘”f d{v"fn(v)} = f.(0).

The case n=1 can be verified by direct substitution of (9) in (8).

This completes the proof of the theorem.
The case f,(1)#0. To remove the restriction f,(1) =0, one sets

(23) Fal0) = o= fa(1) + fo(0),
and
(24) yn(“) = z,(u) + wn(“),

in the equation (8) and obtains

25) O ORI,

a (u2 —_ 0,2)1/2—)\

and
b Caw/awnw)
(26) j; ———-(u2 Y du = f, (o).

The solution of (25) is found to be

2f4(1) cos (W)\)O'_Z)\C:L(u)
T 2F1[n, -\ 11 — 0-“2](1 — u2)1/2+)\

27 zn(u) =

by Lemmas 1 and 2, while that of (27) is given in (9) as

2 cos (w\)
Wo(u) = — ———— o2

(28)

1 C;il(u/‘v)d{ ‘v"f:(v) }
X f vn—zx—x(vz

— u2)1/2+" 2F1[n, -\; 1;1 — v’/az] )
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Consequently, the solution of (8), in this case, is

W — 2 cos (x\) _n[ Fa(1)C21(4)
T T A= @ R, a1 — o]
29 — *
@ _ f Coms(w/9)d{wfao)) ]
w VDTI(g2 — )V R T 25151 — 92/02] )
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