
A SPECTRAL MAPPING THEOREM FOR FUNCTIONS
OF TWO COMMUTING LINEAR OPERATORS

ANTHONY TRAMPUS1

Let X be a complex Banach space and X* the dual space of X. Let

ß and ß* be the Banach algebras of all endomorphisms of 9C and X*,

respectively; if TE& the adjoint r*£a*. We use (B to denote the

Banach algebra of all endomorphisms of ß considered as a Banach

space. As in [3] we associate with any U, F£d, the operators

U+, F-G03 defined by U+(X) = UX and V~(X)=XV. Note that
U+V~= V~U+. Let/(ft, ft) be a single-valued function of two complex

variables that is analytic in both variables in a domain that contains

the product <r(U+) X<r(V~) of the spectra of the operators U+ and V~.

Then f(U+, V~) is given by (see J. Schwartz [4])

M      (t~)' (   Í «lI+ - u+y^2l~ - V~rif(Su M&,,
\ ¿in/ J viJ r,

where Ti and T2 are suitable contours and / is the identity operator

in A. The operator defined by (1) belongs to (B.

In this note we determine the relationship among the spectra of

f(U+, V~), U+ and V~ thus extending the well-known result of the

case of a single variable. G. Lumer and M. Rosenblum [3] have paved

the way for this result in their analysis covering the case /(ft, ft)

= £"-i/<(ft)g»(ft)- We also study point spectra and eigenvectors,

and apply our results to the Fréchet derivative.

It is shown in [3] that <r(U+)=o-(U) and <r(V~) =a(V). The rela-

tions for point spectra are given in the following lemma. Let o-p(T)

denote the point spectrum of the operator T. For any xEX and

y*EX* we define the operator x®y*E& by (x®y*)z = y*(z)x.

Lemma. Suppose U, VE& and that uEX and v*EX* are eigen-

vectors of U and V* with corresponding eigenvalues p and v, respectively.

Then
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(a) U+V~(u®v*)=pv(u®v*),

(b) <rp(U+)=ap(U),

(c) *p(V-)=<tp(V*).

Proof, (a) follows from the fact that U(u®v*)V= (Uu)®(V*v*).

Then (a) implies ap(U) QaP(U+) and ffp(V*)Qap(V~). Suppose that

£Q<Tp(U+) and r¡Q<r(V--) with corresponding eigenvectors X and Y,

respectively. Then there exist a, bQK. such that Xa^d, Yb^d.

Choose y*£9C* with y*(Yb) = l. By direct verification we see that

U(Xa)=Z(Xa) and V*(Y*y*)=r,(Y*y*). Hence £QaP(U) and
r¡Qa(V*). This completes the proof.

If/(f) is a single-valued function that is analytic in a complex do-

main that contains ff(U), it is shown in [3] that

(2) (f(U))+=f(U+),

(3) (f(U))-=f(U~).

Theorem. If f(U+, V~) is defined by (1) then

(4) °W+,V-))=*MU),*(V)).

Furthermore, if u and v* are eigenvectors of U and V* with correspond-

ing eigenvalues a and v, respectively, then u®v* is an eigenvector of

f(U+, V~) corresponding to the eigenvalue f(p., v).

Proof. Let \Qa(f(U+, V~)) and suppose \Qf(a(U), <r(V)). Then

the function *(fi, f*)-=(/(fi, fz)-X)-1 is defined for (U+, V~). Also,
h(U+, V~)(f(U+, V-)-\I+)=I+ which contradicts the assumption

that \Q<r(f(U+, V~)). The proof of (4) is completed in the manner

of G. Lumer and M. Rosenblum [3, Theorems 9 and 10 ] on observing

that for Zea

/([/+, v-)x = (—) f   f (til - uy^ttii - V)~lf(h,tùH;&*.
\ ¿m/ J ViJ r,

The second part of the theorem may be verified directly with the aid

of (2), (3) and the lemma.

Relation (4) is an extension of a result of Lumer and Rosenblum

[3, Theorem 10]; M. Hausner [l] obtained (4) in the case of matrix

algebras.

A function/ with domain and range in & is analytic at XQ& if the

Fréchet differential has the form

df(X, E) = g(X+, X-)H

where g has domain in(BX(B and range in (B. As in [5] the derivative

P(X)=df(X, -)=g(X+, X-). Let/(f) be a single-valued function of
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a complex variable that is analytic in a domain that contains a(X).

Then/(Z) is defined for \\Z—X\\ small and has a Fréchet derivative

(see J. Schwartz [4])

r(x)=f(x+, X-)

where the right side is defined by (1) with

/(ft, ft) = ——-■       if ft ^ ft
(5) ft - ft

= /'(ft) if ft = ft.

We then have the following corollary.

Corollary. The spectrum of the Fréchet derivative considered as an

operator on the Banach space G, is given by

(6) c(f(X))~f(o-(X),a(X))

where /(ft, ft) is defined by (5). If x and y* are eigenvectors of X and X*

corresponding to eigenvalues £ and n, respectively, then x®y* is an

eigenvector of fl(X) corresponding to the eigenvalue /(£, 17).

M. Hausner [l] obtained (6) in the case of matrix algebras.
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