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1. Introduction. Let P(£) be an NXN matrix whose elements are

polynomials of degree = m in £ = (£1, •••,£„) and let

L s P(D) - Ed/dt,

where D=(d/dxi, • • • , d/dx„) and E is the NXN identity matrix.

The operator L is said to be correct in the sense of Petrovskiï [3 ] if

there exists a constant R > 0 such that

(1.1) max Re w(8 Ú R       for all £ E E",
j

where the p¡ (j= 1, 2, • • • , N) are the eigenvalues of P(i£). We shall

give a necessary and sufficient condition for the correctness of L in

terms of finite difference approximations to L.

Let h and r he arbitrary positive numbers, and let

Rh,= {(jh,lr)\jEI»,    2=0,1, •••},

where 7" is the set of all «-tuples of integers. As approximations to L

we shall consider the two-parameter family of two-level finite difference

operators

LhiTu(x, I) - £ BTu(x + rh, /) + £ B™u(x + rh,t + r)
r r

for (x, t) ERh.r, where the B® are NXN matrices which depend only

on h and t, rEI", and 23'<) = 0 outside some fixed finite neighborhood

of r = 0. The family of finite difference operators {LhfT} is said to be

consistent with L if

(1.2) (Lh,r - L)u(x, l)-*0       as h, r -► 0

for all sufficiently smooth u [7].

For any aEE", Ln¡Tu = Q has a solution of the form u(x, t) =eia xq(t)

if and only if q satisfies
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( Z Bi:V**) q(t) + ( Z BrV°T'h) q(t + r) = 0

for t = It. Let

Hi(h,T,a) = ¿:BrÍ)eiaTrh       0'=0,1).

r

The family of finite difference operators {Lh,t} is said to satisfy the

von Neumann condition for stability if there exists a positive rational

number a, and positive constants ho and Xo such that for all aQEn

and AgAo, and for every subfamily {L«,x} of }Lä,t} with \=rh~a

= constantgX0 the eigenvalues 7,=7,(X, h, a, a) of —HrlH0 all

satisfy

(1.3) | 7j |   gl + cr,

where c is a positive constant which may depend on a, ho and X. The

von Neumann condition is necessary for the stability of solutions of

the initial value problem for {Lh,r} (see [7] and §3 below).

In §2 we shall prove

Theorem 1. The differential operator L is correct in the sense of

Petrovskiï if and only if there exists at least one family of two-level

finite difference operators {Lh,t} which is consistent with L and which

satisfies the von Neumann condition for stability.

In view of the connection between correctness in the sense of

Petrovskiï and the von Neumann condition for stability it is reason-

able to expect to be able to prove finite difference analogues of known

results concerning the initial value problem with correct L for the

initial value problem for a family {La,t} which satisfies the von

Neumann condition. We consider this question in §3, where we show

that for explicit two-level finite difference operators the von Neu-

mann condition is sufficient for stability in the sense of Rjaben'kiï

and Filippov [8].

2. Proof of Theorem 1. Assume that L is correct in the sense of

Petrovskiï, i.e., that (1.1) holds. Let 5 = (Si, • • • , 5„), where h¡u(x, t)

= u(x+efh, t) —u(x—ejh, t) and e¡ is the jth unit coordinate vector in

En, and let Au(x, t)=u(x, t+r)—u(x, t). The family of two-level

finite difference operators

(2.1) LhlT =■ P(6/2k) - t~1EA

is clearly consistent with L. We claim that \Lh,T} satisfies the von
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Neumann condition. In this case Hi = — r~lE and Ha = t~1E

+P(i sin ah/h), where sin ah= (sin ají, • ■ • , sin a„h). Thus — HrxHo

= E+tP(í sin ah/h) and it follows that

(2.2) | y¡ |2 = 1 + t{ 2 Re /i,(sin aÄ/Ä) + t | /¿/(sin ah/h) \2}.

By a theorem of Gel'fand and Silov [3, p. 83], there exists a constant

Ci>0 such that

(2.3) max | „,({) |   = Cl(l + |í|)-,
j

where |£| 2= XXi S, w0 = maxisi;S]v (pk/k), and ^ is the degree of

the coefficient of pN~k in the characteristic polynomial of P(ii;). If

we use (1.1), (2.3) and the fact that [ sin ah\ a»1'2 in (2.2) we obtain

| 7j |2 Ú 1 + r{ 2R + c\rh~2m\h + n'T"}.

Thus if we set X = rh~2m° and h0 — 1, the von Neumann condition holds

for arbitrary X0>0.

Now assume that we have a family of finite difference operators

{ift,T} which is consistent with L and for which the von Neumann

condition holds. Choose any X ̂ Xo and consider the subfamily {Ln,\}.

Write —HrlHo in the form

(2.4) -22712îo = 22 + rPA,x(a).

We assert that for each fixed aEEn

(2.5) \imPh*(a) = P(ia).
*-K>

Let Ui(x) =eic,TxE and u2(x, t) —tui(x). If we apply (1.2) first to «i and

then to u2 we obtain —(Ho+Hi)=P(ia)+Ai and t2Ji = £+^42,

where A¡—»0 as h—+Q for each fixed aEE". In particular, it follows

that (t27i)-1 = E-M3, where A3—>0 as h—>0 for fixed a. Thus

-T-1(E+Hr1Ho)=P(ia)+AiP(ia)-T-Ai+AiAi, which proves the

assertion.

Let pjh,x>(a) denote the eigenvalues of Pn,\(a). In view of (2.4) we

have 7y = 1 +t^*'x). Since the von Neumann condition holds, it fol-

lows from (1.3) that

| 7/1" - 1 + t(2 Re£M + r \ W(A,X) |) g 1 + rc(2 + h*\c)

for all fe = Ao and aEEn, where c = c(a, ho, X). In particular,

(2.6) Re PjhM(a) á c ( 1 + — h"a\c) m c(a, h0, X)
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for all Agfeo and ctQEn. On the other hand, (2.5) implies that
Pj"'^(a)—>pi(oi) as h—»0 for each fixed ctQEn. Thus it follows from

(2.6) that Re Pj(o¿) gc(a, ho, X) for all aQE", i.e., L is correct in the

sense of Petrovskiï.

Remark. Although, as we have proved, Th~2m» = constant implies

the von Neumann condition for the difference operators (2.1), in

certain special cases an exponent smaller than 2mo will suffice. For

example, if L is parabolic in the sense of Petrovskiï [3], i.e., if

Re Pi(£) g — p|£| * for some p>0, then m0 = m but the von Neumann

condition holds for (2.1) if rh~m is suitably restricted [2]. On the

other hand, if for n= 1

P(¿©
= /0    *£\

~\a 0)

(i.e., Lu = 0 is the one-dimensional wave equation) then mo=l and

rh~2 = constant is also necessary for the von Neumann condition. In

this case, and in general, the situation can be improved by using a

more sophisticated difference approximation in place of (2.1) (see

[7, p. 168]).

3. Stability. We now restrict our attention to the class of explicit

finite difference operators

£h,ru(x, t) = Z BTu(x + rh, t) — t-1Aw(#, t).

For example, the difference operators (2.1) are clearly explicit. More-

over, the two-level approximation to the one-dimensional wave oper-

ator discussed in [7, formula (8.5), p. 168] is also explicit since it can

be written in the form

(3-D ■ßn.r  —

0     — s
2h

c C2T
— 5 —a2

12Ä      4Â2

±,a   oy

t \0     A/

We shall assume that {£ä,t} is consistent with a fixed differential

operator L^P(D)—Ed/dt and that the von Neumann condition

holds for {£h,T}. (Thus L is correct.) Let g = g(x) he a given A7-vector

defined on En. We consider the two-parameter family of initial value

problems

(3.2)
£».»«(*, 0=0       for (*, 0 G RhAT) ;

u(jh,0)^g(jh)       for jQIn,
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where

Rn,r(T) = {(jh, h) \j € /», * - 0, 1, . . •, T/r - 1}

for arbitrary T>0 and t chosen so that T/t = integer. Since £a,t is

explicit and r ranges over a finite subset of I", it is clear that the ini-

tial value problem has a unique solution for every positive h and r.

Let X be a positive constant and consider the one-parameter sub-

family {£h.\} Q {£k,r} characterized by tA_"=X for some fixed posi-

tive rational number a. The one-parameter family of initial value

problems (3.2) corresponding to {£»,x} is said to be stable if it is uni-

formly well-posed for all sufficiently small h, i.e., if there exist norms

|| -||o and || -||i, and positive constants h0 and a-a(a, ho, X), such that

for every AgÂ0 the solution u — un,\(x, t) satisfies ||w||igo-||g||o. The

problem of stability of (3.2) has been studied by various authors. In

the work of Lax and Richtmyer [7] and Kreiss [5; 6], ||g||o is the

L2(En)-norm and ||m||i = sup[o,t](./V'|m| 2dx)112. Kreiss [5] gives a

necessary and sufficient condition for stability in this sense. John [4]

and Aronson [l ; 2] use the uniform norm for ||g||o and a norm involv-

ing the first m — 1 differences of u for ||m||i. In all of these works the

von Neumann condition is necessary but, in general, not sufficient

for stability. In this paper, as in the work of Rjaben'kiï and Filippov

[8], ||w||i will be the uniform norm and ||g||o will involve various

derivatives (or differences) of g. We shall show that the von Neumann

condition is sufficient for stability in this sense.

For explicit difference operator £*,, we have — H^Ho — E +tPj,,t(o:) ,

where

(3.3) P„,r(a) = Z Bre«>T'\
r

Since {£h,r} is consistent with L, we have

(3.4) Ph,r(a) -* P(ia)        as h, t -» 0

for each fixed aQEn. Write P(Ç) = Zi^o-PiGr), where the elements

of Pi(£) are homogeneous polynomials of degree I in £. It follows from

(3.3) and (3.4) that

(3.5, mZMAW^F*» 'rT0'1:/--;;l\     T I    0 for / = m + 1, m + 2, ■ • ■

as h, t—*0 for fixed aQEn. The matrices Br = 0 for r outside a finite

neighborhood of r = 0. Let r(1), • • • , r(,) be the set of all rQIn such

that r^O and 5r^0. Using Cramer's rule, it is not difficult to verify
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from (3.5) that h'Br is bounded as h, t—*0 for all r. Let q he the small-

est integer for which hqBr is bounded as h, t—»0 for all r. Clearly q = s.

It is possible to have q<s. For the operator (2.1) we have s = 2m

and q = m, and for the operator (3.1) we have s = 4 and q = 2. In

general, if £k,r involves only centered ^-differences 5, then q = s/2. It

follows from Taylor's theorem and (3.3) that2

\p>,(«)\ ^£l«l¡(
1-0

lh)1 ^      /<xTr\l\       |a|« —,     1      , ,

Thus in view of (3.5) and the definition of q, there exist positive con-

stants ho, To, and Ci = Ci(ho, To, q, s) such that

(3.6)     I Ph,T(a) I   á Ci(l + I a | )«   for all h è ho, r g r0 and a G £n.

Let &y, where v is a non-negative integer, denote the class of all

2V-vectors g = g(ie) defined on E" which are such that gEC'(En)

and DkgEL(En) for \k\ úv. If gE&» we shall write

||g||,= max(  f   I Dkg\dx).

Let

RhAT) = {(jh, It) I j E 2», I = 0, 1, • • • , T/t} .

For u = u(x, t) defined on Rn,r(T) we shall write

||«|| = _max  I u(x, t) I .

We shall prove

Theorem 2. Let the family {J3*,T} of explicit finite difference oper-

ators be consistent with a fixed differential operator L and satisfy the

von Neumann condition. For any'K^'Ko let u = un,\(x, t) denote the solu-

tion of (3.2) for £A,x. Then if gE&v, for j» = g(2V—l)+» + l, there exists

a constant a = o(a, ho, X, q, s, N, T) such that

\\u\\ûo\\g\\,      for all húh.

Proof. Let g(a) denote the Fourier transform of g(x). Since gE&>

it is easy to verify that | g(a)\ á(n+l)'(l + |a|)-'||g||,. Assume that

there is a constant c2 > 0 such that

(3.7) \[E + rPM)l\   =c2(1+ I«!)«»"1)

2 If u=(ui, • • • , un) then | u\ = ]£/j I ui\ • If -4 = (an) is an NXN matrix then

IAI = N maxi,; | a<,|. Note that | Au\ g \A\ \u\.
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for ail húho, aQEn and hûT. Let

u(x,lr) = (2ir)-n'i f   {E + TPh¿(a)}lg(a)eiaT*da.

Then

| u(x,It) |   g (2ic)-»>2(n+iyc2\\g\\y f   (l+\a\ )-<»+»o«,

and u(jh, It) is clearly the solution of (3.2). Thus we must show that

(3.7) holds.

By a theorem of Schur (quoted in [7, p. 67]) there exists a unitary

matrix U= Uh,i(a) such that U*Ph,x(a) {/= Ph.\(a) = (p¡jM(a)), where

^.x) = M(Ä,x))^,x, = 0 for i>jf and  |^x)| ÚN2 maXki |^'|. Thus

{E+TPhAa)\l=U{E+TPh,x(a) }'U*. Write E+TpH.x = T+TPh,x,

where T is the diagonal matrix with elements 7,- = 1 +Tpjh,x\ In view of

(3.6), |P*.x| gciA73(l + |a|)a- Moreover, according to (1.3), |7,-|

g 1+CT. Thus for 1>N— 1, taking account of the structure of T and

Ph,\, we find

N-l

I (E + tPh.^Y I g Z WCj(l + cTy->{ CiN'(l + I a I )«} ' 3 Jf.
y=o

Since Ci.yg/'/j! and Zrg T we obtain

AT-l

M g ^»-Kl + I a I )«W-»«t Z (ciTN*)>/jl = 6,(1 + I a I )«wr-i)f
y-o

where c3 = c3(a, ho, X, a, 5, 2V, T). Therefore | (E + tPa,x)!|

^c3N2(l + \a\)^N-" for / = iV. On the other hand, it follows from

(3.6) that for l&N-l, |(£+tPa,x)'| á(iV+A5ftX)w-1(l + |a|)«w-»
sct(l + \a\)"ÍN~1'>, where c4 = c4(a, h0, X, a, 5, iV). Therefore (3.7)

holds with c2 = max (c3N2, c4) and the proof of the theorem is complete.

Remarks. As Rjaben'kiï and Filippov [8] point out, (3.7) is the

finite difference analogue of Petrovskiï's "Bedingung A." Thus we

may paraphrase Theorem 2 as follows : The von Neumann condition

implies "Bedingung A" which in turn implies stability in the indi-

cated sense. If, in addition to the correctness implied by the hypoth-

esis of Theorem 2, we make further assumptions about the structure

of L we can, of course, obtain much stronger results (see, e.g., [l; 2]

for results concerning parabolic equations and systems). On the

other hand, Theorem 2 can be generalized for data of polynomial

growth. This, however, would require the deep methods of Gel'fand

and Silov^ [3 ] and is beyond the scope of this note.
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Stability considerations are important for two reasons. First be-

cause, in general, they yield information about the effects of rounding

errors on the numerical solution of (3.2), and second because in the

appropriate setting, as was shown by Lax [7], stability is necessary

and sufficient for the convergence of solutions of (3.2) to the solution

of the corresponding initial value problem for L. Theorem 2 is not

appropriate for the former application. To obtain a better result for

this purpose, we assume that g has compact support and let

\\g\\h.v=    max     I Ari*'A*g(*) I ,

where A = (A;l, • • • , A„) and Ayg(x) =g(x+e¿A) — g(x). For such g,

Rjaben'kiï and Filippov [8] have shown that (3.7) implies that

m|| âj<r||g||fc,», where <r depends on the support of g. Since we have

shown that the von Neumann condition implies (3.7) it follows that

under the hypothesis on L in Theorem 2, \\u\\ a^Hgl!»,*. Thus, in par-

ticular, if the values of g are known only to within + e, then the error

from this source in u is bounded by 2"ffth~'.
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