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NOTE ON A NONLINEAR VOLTERRA EQUATION

J. J. LEVIN1 AND J. A. NOHEL2

1. Introduction. We investigate the solutions of

(1.1) x'(t) = - j\(t - T)g(x(r))dr (' = ^j

as /—»oo, where a(t) is completely monotonie on 0g/< oo and where

g(x) is a (nonlinear) spring. Under this hypothesis, (1.1) was shown

in [2 ] to be relevant to certain physical applications and results were

obtained there for the linear case g(x)=x. (If o(/)=a(0), then (1.1)

reduces to the nonlinear oscillator x"+a(0)g(x) =0.) Equation (1.1)

was studied in [l] under less hypothesis on a(t). However, while the

result is weaker than that of [l ], the present approach draws together

such different notions of positivity as Liapounov functions, com-

pletely monotonie functions, and kernels of positive type. It also

provides a new Liapounov function for (1.1). Specifically, we prove

the

Theorem. Let a(t) and g(x) satisfy

(1.2) a(t) 6C[0,«),(-l)¥«(l) 2 0 (0< *<«;*-0,1,2, • ••)•

(1.3) g(x) E C(- co, co), xg(x) > 0 (x * 0), G(x) =  (Xg(S)dt-+ »
J 0

_ (1*1 ->«>).
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Ifa(t) ¿¿a(0) and ifu(t) is any solution of (1.1) which exists on 0 ^t < 00,

then

(1.4) lim «W(0 = 0 0'- 0,1,2).
|-»0O

In [l] only k = 0, 1, 2, 3 is required in the analogue of (1.2), rather

than complete monotonicity. The Liapounov function used there was

(1.5)

E(t) = G(u(t))+- «(<)[ j  g(u(r))dr~^

- jj a'(l - 0 [ J «(«(*))&] ¿t è 0.

In (1.5) and the sequel u(t) is the solution of (1.1) on 0^t< co being

considered. Remarks concerning existence, uniqueness, as well as

background information and references, may be found in [l].

2. Positivity. In this section we motivate the hypothesis (1.2) and

also obtain the Liapounov function. Suppose that the origin of the

problem is such that a(t) ^0, a(t)QC[0, 00), a'(t)QLi(0, T) for each

0<r< oo, and (1.3) are all required. Then clearly

(2.1)    V(t) = G(u(l)) + - f    f a(r + s)g(u(t - r))g(u(t - *))**
2 J 0 •/ 0

is nonnegative if the second term is. (From (1.1) and (1.3), V(t) may

be interpreted as the sum of a potential and kinetic energy.)

The second (or kinetic) term of V(t) will be nonnegative if it is

assumed that a(r+s) is a kernel of positive type [3, p. 270] on the

square 0 <t, 5 <t for each 0 <t < 00. By a theorem of Boas and Widder

[3, pp. 273-275], this will be the case if and only if

exp[-#]¿a(0 (0 < I < 00),
-m

where a(f) is nondecreasing on — co <£< 00  (and may be assumed

normalized: o(0) =0,a(0=i[o(f+)+«({-)]).

Differentiating (2.1) yields

(2.3) V'(t) =  f    f a'(r + s)g(u(t - r))g(u(t - s))drds,
J 0 " 0

where we have used the above assumptions, (1.1), the absolutely

continuity of a (t) onQ<e^t^T<«> implied by (2.2), and an obvious

change of variables. If V(t) is to serve as a Liapounov function for
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(1.1), then V'(t) must be nonpositive. By (2.3) the latter will be as-

sured if —a'(r+s) is a kernel of positive type on the square 0<r,

s<t for each 0</<«>. However, this is compatible with (2.2) if

and only if ct( — <x>)=a(0 — ). Thus, also using a(/)GC[0, °°), one has

(2.4) a(t)
/> 00

exp[-£/]áa(0 (OáK <*>),
o

where a(<») < =°. By a theorem of S. Bernstein [3, p. 160], (1.2) and

(2.4) are equivalent.

Having motivated the hypothesis (1.2) and obtained a Liapounov

function V(t), it is interesting to compare the two Liapounov func-

tions (1.5) and (2.1). It is obvious that if a(t)=a(0), then E(t)

= V(t) (0á/<°°). We now prove a strong form of the converse

statement. In particular, if u(0)?¿0 and if E(t) = V(t) (0^/^/0) for

some 0</o<co, then a(/)=a(0) (0^/<°o). For this one need only

assume that a(/)GC[0, °o), (-l)*a(*>(/) 20 (0</<co; k = 0, 1, 2),

g(x) G C( — », co ), and g(x) = 0 implies x = 0. Direct calculations show

that (1.5) and (2.1) may also be written as

m = G(u(0) + j 'g(u(r)) if 'a(t - r)g(u(s))ds} dr,

V(t) = G(u(t)) +f \(u(t)) j J* \(2t - t - s)g(u(s))ds} dr.

Hence

(2.5)

f \(u(r)) j J ' [a(l - t) - a(2t - r - s)]g(u(s))dsj dr bb 0

(0 á / â to).

From the hypothesis on a(t) one has a(t— t)— a(2t— t — s) 20 for

O^r, s^t. As «(0)^0, there exists by continuity and the hypothesis

on g(x) a 0</i^/o such that g(u(t))^0 for O^/^/i. It is now clear

from (2.5) that a(t-r)=a(2t-T-s) (O^r^s^tèh). The latter to-

gether with o(/)GC[0, °°) easily implies a(/)=ci(0) (0^/^2/i).

Hence a'(/)=0 (0^/^2/0. However, as -a'(t), a"(/)20 it follows

that a'(t) = 0 (0g/< a») so that a(t)=a(0) (0g/< oo), which proves

the assertion.

3. Proof of the Theorem. Let a(t),  V(t) be given by (2.4), (2.1)
respectively. Define
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(3.1) r(f, t) =  f   exp[-£(/ - r)]g(u(r))dr   (0^,K 00).

Then

ÓT
(3.2) — (£, t) = *(«(*)) - £r(í, t) (0 g f, í < 00).

Clearly r(£, t), Tt(!-, t) are bounded functions of £ on 0^£< co for

each fixed t in O^f < 00. Hence, by Fubini's theorem, one may write

(1.1) (with u(t) replacing x(t)), (2.1) as

(3.3) «'(i) = - f   T(t,t)da(& (0 S < < «),
J 0

(3.4) V(t) = G(u(t)) + — f   T2(?, 0**(Ö ^0 (OgK»)
2 J 0

respectively and, moreover,

(3.5) V'(t) = - f V«(€, i)da(Ö á 0 (0 = ¿ < 00).
J 0

From (3.4), (3.5) one has

G(u(t)) = 7(0 £ V(0) = G(«o) (0 ^ < < « ),

where u0 = u(0). It follows from (1.3) that

(3.6) I u(t)\   = K < 00 (0 ^ < < 00).

In (3.6) and subsequent formulas K = K(u0) < co, where K may vary

from formula to formula, and K(uo)-*0 as Mo—>0. Thus

(3.7) |r({,«| úKt, |{r(£,o| sí, |r,(€,0| s r(0á «,«<•)•

Differentiating (3.3) (using Fubini's theorem) yields

(3.8) «"(0 = - *(«(<))«(») +  f   £r(f, í)áa(0 (OáK»),
•J 0

which together with (1.3), (3.6), and (3.7) implies

(3.9) I u"(t)\ ÚK (0 = t < 00).

By (3.6), (3.9), and the mean value theorem one has

(3.10) I u'(t)\   ÚK (OgK»),

From (3.2), (3.5) there results
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V"(t) = - 2g(u(t)) f   £r(£, t)da(S) + 2 f   f»r»(fc t)da(S)

(0 á< < »),

so that by (1.3), (3.6), (3.7) one has | V"(t)\ £K on 0gi< ». The

latter together with (3.4), (3.5), and the mean value theorem implies

(see Lemma 1 of [l])

£r2(£, t)da(Q = 0-

We assert that there exists a £i>0 such that r(£i, t)—*0 as /—►».

Suppose not and let 0<£0< ». Then there exist a X = X(£o)>0 and

a sequence \tn = tn(^o)}, where /„—*» as »—>», such that |r(£0, /»)|

SïX. From (3.1) one has

(3.12)    —(£,/)=- eXp[-£«-T)](í-r)g(«(r))áT      (0g£,/<»).
o£ J o

Let 5 = min($o/2, X^/Si^), 7b-{{| |«-€.[á*}, where |g(«(0)|
^i^i on 0¿í< ». Then by the mean value theorem and (3.12) one

obtains |r(£, *„)-r(£0, 0| SX/2 (££/«„) so that, as |r(£„, Ol SiX,
|r(€,uUV2tt€/ié). Hence

f £r2(£, o¿a(í) à f £r2(£, o<fa(€)
•'O «'it

= ^ [«(ío + o) - a(h - h)\ à 0,
8

which with (3.11) yields a(£0 + S) = a(£o — Ô). As this is true for each

0<£o< », it follows that a (0+) = a(») which contradicts a(t) f^a(0).

Thus, there exists a £i>0 with the asserted property.

Let/(í)=exp[-£ií], p(t)=g(u(t)) for 0S¿<» and/(O = 0(0 = 0
for — » <¿<0. From the preceding paragraph one has

/CO

/(/ - r)p(r)dr = 0.
—CO

By applying Pitt's form of Wiener's tauberian theorem [3, p. 211]

to (3.13), we now show that p(t)—*Q as /—>». (A longer elementary

argument could also be used here.) Clearly, fQLi(— », ») and its

Fourier transform f(s) = (2ir)~llt(^i+is)~19£0 for — »<s<». As

\p(t)\ á K (—»<i<»), there remains only to show that p(t) is a

slowly decreasing function in (— », »). For this it suffices to show
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that p(ti)— p(si)-+0 asi—>oo if {t(}, }i,} are any sequences satisfying

/<>s<>0 and s¿—>°°, /¿ — Si-M) as »—>oo. However, from (1.3), (3.6),

(3.10), the mean value theorem, and uniform continuity, it is clear

that g(u(ti))— g(u(si))—>0 as ¿—>oo for such sequences. Thus/p(t)—>0

as /—*oo, which together with (1.3) and (3.6) yields w(/)—>0 as t—*»

(i.e., (1.4, j = 0)).
From (1.4, j = 0) and (3.9) one has (1.4, j = l) by the mean value

theorem. From (1.4, j = 0) and (3.1) it is an elementary exercise to

show that £r(£, /)—>0 as t—* 00 uniformly with respect to Ç on 0 ^ ^ < 00.

This together with (1.4, j=0), (1.3), and (3.8) implies (1.4, j = 2),

which completes the proof.
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