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NOTE ON A NONLINEAR VOLTERRA EQUATION
J. J. LEVIN! AND J. A. NOHEL?

1. Introduction. We investigate the solutions of

t
1.1) ¥ = —f a(t — 7)g(x(r))dr (’ = i)
0 dt
as I— w0, where a(t) is completely monotonic on 0=<¢{< « and where
g(x) is a (nonlinear) spring. Under this hypothesis, (1.1) was shown
in [2] to be relevant to certain physical applications and results were
obtained there for the linear case g(x)=x. (If a(¢) =a(0), then (1.1)
reduces to the nonlinear oscillator x'’+a(0)g(x) =0.) Equation (1.1)
was studied in [1] under less hypothesis on a(t). However, while the
result is weaker than that of [1], the present approach draws together
such different notions of positivity as Liapounov functions, com-
pletely monotonic functions, and kernels of positive type. It also

provides a new Liapounov function for (1.1). Specifically, we prove
the

THEOREM. Let a(t) and g(x) satisfy
(1'2) a(t) € C[O’ °°)) (_l)ka(k)(t) =0 (0 <t< °°;k = Oy 1’ 27 ct '))

(1.9) ge) € Cl=, =), 5@ >0 (2 0), 6) = [ “g@dt— =

(| 2| = ).
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If a(t) #a(0) and if u(t) is any solution of (1.1) which exists on 05t < w0,
then

(1.4 lim #@) =0 G=0,1,2).

{—

In [1] only £=0, 1, 2, 3 is required in the analogue of (1.2), rather
than complete monotonicity. The Liapounov function used there was

B0 = G) + - o()] [ swtenar]

_ %_ f ota/(t _ ,)[ f ‘g(u(s))ds]zdr > 0.

In (1.5) and the sequel «(t) is the solution of (1.1) on 0=t < « being
considered. Remarks concerning existence, uniqueness, as well as
background information and references, may be found in [1].

1.3)

2. Positivity. In this section we motivate the hypothesis (1.2) and
also obtain the Liapounov function. Suppose that the origin of the
problem is such that a(t) 20, a(t) EC[0, »), a’(t) EL,(0, T) for each
0<T< », and (1.3) are all required. Then clearly

@) v =6+ [ [ atr+ Dgtut — gttt — ards
' 2J0 Jy

is nonnegative if the second term is. (From (1.1) and (1.3), V(f) may
be interpreted as the sum of a potential and kinetic energy.)

The second (or kinetic) term of V(f) will be nonnegative if it is
assumed that a(r+s) is a kernel of positive type [3, p. 270] on the
square 0 <7, s <t for each 0 <t < «. By a theorem of Boas and Widder
[3, pp. 273-275], this will be the case if and only if

(2.2) o) = [ expltildatt 0<t< ),

—0

where a(£) is nondecreasing on — o <£{< « (and may be assumed
normalized: a(0) =0, a(£) =3 [a(t+) +a(t—)]).
Differentiating (2.1) yields

2.3) v = [ [ e+ gt — gt — ards,

where we have used the above assumptions, (1.1), the absolutely
continuity of a(f) on 0<e=<¢t< T < « implied by (2.2), and an obvious
change of variables. If V(¢) is to serve as a Liapounov function for
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(1.1), then V’(f) must be nonpositive. By (2.3) the latter will be as-
sured if —a’(r+s) is a kernel of positive type on the square 0<7,
s<t for each 0<t(< . However, this is compatible with (2.2) if
and only if &(— ©) =a(0—). Thus, also using a(t) €C[0, »), one has

@9 o) = [ expl—tldatd )

where a(®) < . By a theorem of S. Bernstein [3, p. 160], (1.2) and
(2.4) are equivalent.

Having motivated the hypothesis (1.2) and obtained a Liapounov
function V(¢), it is interesting to compare the two Liapounov func-
tions (1.5) and (2.1). It is obvious that if a(t)=a(0), then E(¢)
=V({¢) (0=t<«). We now prove a strong form of the converse
statement. In particular, if #(0)#0 and if E¢)=V() (0=t=to) for
some 0<{,< ®, then a(t)=a(0) (0=t< »). For this one need only
assume that a(t)EC[0, =), (—1)}a® () =0 (0<t< ; k=0, 1, 2),
g(x) EC(— o, =), and g(x) =0 implies x = 0. Direct calculations show
that (1.5) and (2.1) may also be written as

50 = 660) + [ swen{ [ ot = ngunas}ar,

V0 = 6o + [ o‘g(u@» { / a2 = 7 = Jg(u()ds | i

Hence

f ‘8(“(7')) {f [at —7) —a(2t — 7 — s)]g(u(s))ds} dr=0
@5 ’
0=t = ).

From the hypothesis on a(f) one has a(t—7)—a(2t—7—5)=0 for
0=7, s<t. As u(0)50, there exists by continuity and the hypothesis
on g(x) a 0<t =2 such that g(u(f)) #0 for 0=t =<t. It is now clear
from (2.5) that a((t—7)=a(2t—7—5) (07 <s=Zt=t). The latter to-
gether with a({)EC[0, «) easily implies a(t)=a(0) (0=t=2t).
Hence a'(f)=0 (0=t<2t). However, as —a’(#), a”’(¢) 20 it follows
that ¢'(¢) =0 (0=<t< ») so0 that a(t)=a(0) (0=¢< =), which proves
the assertion.

3. Proof of the Theorem. Let a(t), V(¢) be given by (2.4), (2.1)
respectively. Define
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ey 1) = [ expl—k6 — Dlsu)ir 05 &1 < ).
Then

ar
62 0 =) ~HE)  OSEi< ).

Clearly I'(¢, t), T':(%, t) are bounded functions of £ on 0<£(< « for
each fixed ¢ in 0 =<t < . Hence, by Fubini’s theorem, one may write
(1.1) (with %(¢) replacing x(t)), (2.1) as

69 w0 =~ [ 1604w 0st< ),

1 )
G VO =Ge0 + [ ez 0si<w
0
respectively and, moreover,
69 V0=~ e mee so 0St<w)
0

From (3.4), (3.5) one has

G(u(®) = V() £ V(0) = G(uo) 0=2t< ),
where #o=u(0). It follows from (1.3) that

(3.6) lu@®)| s K< 0=t< o).

In (3.6) and subsequent formulas K = K (%) < «, where K may vary
from formula to formula, and K (u,)—0 as %,—0. Thus

@B.7 |rE| =kt [erE )] K, [ TE )| S K 026t <w).
Differentiating (3.3) (using Fubini’s theorem) yields

(3.8) W) = — gu®)a(w) + f T 0da® (0 S1< w),

which together with (1.3), (3.6), and (3.7) implies

(3.9) |w'@t)] <K (0=t < ).
By (3.6), (3.9), and the mean value theorem one has
(3.10) |w@)| s K (0£t< ).

From (3.2), (3.5) there results
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V0 = — 2500 [ 606 0da@ +2 [ Er e
0 0

(0=t< ),

so that by (1.3), (3.6), (3.7) one has I V”(t)l <K on 05t< . The
latter together with (3.4), (3.5), and the mean value theorem implies
(see Lemma 1 of [1])

3.11) lim V() = — lim £T2(¢, t)da(t) = 0.
t— t—® 0

We assert that there exists a £ >0 such that T'(§;, £)—0 as t—=.

Suppose not and let 0 <£y< «. Then there exist a A=\(£;)>0 and

a sequence { ,.=t,.(£o)}, where {,—> © as n— o, such that II‘(EO, t,.)]
=A\. From (3.1) one has

3.12) E(XE,t)=—f‘exp[—i(t—f)](t—f)g(u(f))df (05§, 1< ).
i} 0 B

Let d=min(£0/2, N&/8K1), It,= {£| |E—£o| <8}, where |g(u(2)|
<K, on 0=t< . Then by the mean value theorem and (3.12) one
obtains |T'(£, t.) —T'(&, ta)| SN/2 (€ IL,) so that, as |T'(%o, ta)| 2N,
[T(% tn)| 2N/2 (§ETL,). Hence

[T mae® 2 [ i wdee
0 Iso

)\2
> —8‘:— [a(to + &) — (e — 9] 2 0,

which with (3.11) yields a(£0+8) =a(£o—8). As this is true for each
0<§0< o, it follows that a(0+) =a(« ) which contradicts a(t) Za(0).
Thus, there exists a £;>0 with the asserted property.

Let f(t)=exp[—&t], p(t) =g(u(t)) for 0=5t< e and f(t) =p(t)=0
for — « <¢<0. From the preceding paragraph one has

(3.13) lim T(,8) = lim [ f(t = 7)p(r)dr = 0.

t—o t—o —0

By applying Pitt's form of Wiener’s tauberian theorem [3, p. 211]
to (3.13), we now show that p(¢)—0 as t— . (A longer elementary
argument could also be used here.) Clearly, fEL(— ©, ») and its
Fourier transform 7(s) = (2m)~1/2(£,+145)"15#0 for —w <s<e. As
|p(f)] £ K (— o <t< ), there remains only to show that p(¢) is a
slowly decreasing function in (— «, ). For this it suffices to show
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that p(¢;) —p(s))—0 as i— o if {t.—} , {s;} are any sequences satisfying
t:>5:>0 and s;—>», t;—s;—0 as i— . However, from (1.3), (3.6),
(3.10), the mean value theorem, and uniform continuity, it is clear
that g(u(t:)) —g(u(s;))—0 as i—w for such sequences. Thus,’p(t)—0
as {— o, which together with (1.3) and (3.6) yields %(¢)—0 as t—
(ie., (1.4, §=0)).

From (1.4, j=0) and (3.9) one has (1.4, j=1) by the mean value
theorem. From (1.4, j=0) and (3.1) it is an elementary exercise to
show that £I'(€, £) >0 as {—  uniformly with respectto fon 0 S £ < .
This together with (1.4, j=0), (1.3), and (3.8) implies (1.4, j=2),
which completes the proof.
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