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1. Introduction. The paper is devoted to proving the analogue of

the Adams' vanishing theorem [4] for the cohomology of the Steenrod

algebra A over Zp, where p is an odd prime. The result is used to

obtain a better bound on the order of elements in the stable homotopy

groups of spheres. The methods of proof are analogues of [4].

Let Ao he the subalgebra of A consisting of 1 and Qo [9]; Ao has a

natural A -module structure consistent with the inclusion AoCA.

Theorem 1. Let M be any Ao-free A-module such that Mt = 0 for

t<m. Then Ext'/(M, ZP) = 0 for t<m+(2p-l)s-l, sfcl.

Corollary 1. Ext'¿'(Zp, Zp)=0fort<(2p-l)s-2, jfcl.

Theorem 2. Let Ilf be the rth stable homotopy group of the sphere,

p   an   odd   prime.    Then   Ilf   contains   no    p-elements   of   order
>^)[(H-2)/2(p-l)]>

2. Preliminary computations. Let A he the Steenrod algebra [9]

over ZP, p an odd prime. Let Ar be the subalgebra of A generated by

1 andQo,Ppk,k = 0, • ■ ■ , r-1 (we set P~l = 0, AX = A). Each Ar is a

Hopf subalgebra of A„ s^r, therefore [lO] A. is free as a left (or

right) ^4r-module. The subalgebra A0 is a left /4r-module, the module

structure being consistent with the inclusion A0CAr.

Proposition 1. If s^r, then A, ®Ar A0 is free as a left A a-module.

Proof. Consider the graded dual AT of A,:

(1) A* = Ap[t0, • • • , t.] ®z,Z,[iu • • • , ir]/I„

where Ir is the ideal in the polynomial ring generated by £f, • • • ,

¡Of , • • • , £r (see [9]). The proof is completed by exhibiting

(A, ®Ar Ao)* as a subspace of ^4„* ®A<T, and proving that the former

is a free left ^¿"-comodule. For this purpose it is convenient to replace

Ti and £,• in (1) by c(tí), c(£j), where c is the conjugation antiautomor-

phism.

We wish to study the groups ExtA(Zp, Zp). Let us write ßE(s, f)

if ßEExtAl(Zp, Zp). These groups have been computed completely
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in [S] for t—s^2p(p — 1) — 1. The results are as follows: there are

classes

1 Q (0, 0),       ao Q (1, 1),       hi Q (1, 2p\p - 1)),

\iQ(2,2pi+1(p-l)),       p,Q(S)2sp-s-l),       2gíg¿,

such that the following elements constitute Zp-bases for (s, *)  in

total degrees / — s g 2p(p -1) -1 :

1    for    (0, *)a0, h, h   for    (1, *)

(3) «o, p«, «o   Ao, «o   hi   for   (s, *),       2 g s g p — 1,

a0   for    (s, *)        with s > p.

The elements (2) also satisfy the relations

(4) aoÄo = 0,        «op» = 0,        ao   Ao = 0,        «oÄi = 0.

The information in (2)-(4) allows us to compute a good part of

Ext¿04o, Zp) (see [l]). In particular, we have

Lemma 1. Exts/(A0, Zp) = 0for lgsg£, t<2ps-s-l.

Proposition 2. If M is an A-module which is Ao-free and Mt = 0

fort<m, then Ext^'(M, ZP)=0for lgsgp, t<m + 2ps-s-l.

Proof. In the spirit of Lemma 3 of [3]. Induction and Five

Lemma.

Proposition 3. Suppose that for any M as in Proposition 2 we have

Ext'/(M, Zp) =0for t<m + F(s) for s= 1, • • • , k, then Ext'f'XM, Zv)
= 0 for I<m + F(k) + F(i), *=1, • • • , k.

Proof. Consider a minimal resolution [2] of M as an A -module.

Let N he the module of (k — l)-cycles. Then Nt = 0 for t<m + F(k).

Since A and M are ^40-free, so is N. Applying the hypothesis of the

proposition to N, we have ExtJi'(iV, Zp)=0 for t<m + F(k) + F(i),

i = l, • • • , k. The proof is completed by remarking that

ExtA(N, ZP) ^ Ext*+M(ilf, ZP).

Corollary. // M is any Ao-free A-module with ilf( = 0 for t<m,

then Ext^(Af, ZP)=0 for t<m + T(s), where s>0 and T(rp+j)

= r(2p2-p-l)+2pj-j-l,j = l, ■■• ,p.

Proposition 4. Let i: Ar-^A be the inclusion map. Under the hypoth-

eses of Proposition 3 (with F(s) 2: F(s — 1))
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**: ExU(M, Zp) -> ExtÍ'(Jlf, ZP)

isanisomorphismfort<m + F(s — l)+2pr+1(p — l),wheres = l, • • -,k.

Proof. Consider

0 -» K -* A ®ArM -» üf-» 0

since M and A ®a,M are both ^40-free (Proposition 1), so is K. Also

-£, = 0 for t<m+2pr+1(p-l). Thus ExtA'(K, Zp)=0 for t<m

+ 2pr+1(p-l)+F(s). Since F(s)^F(s-l) (a trivial assumption), the

proposition follows from the remark that

ExtT(A ®Ar M; Zp) £¿ ExUr(M, Zp),

for A is free as a right ^..-module [l0].

3. The cohomology of Ai. We wish to compute Ext^^Z,, Zp) ; we

shall use the method of [8]. Let Qi= [P1, Qo] (see [9]); then we have

the following relations :

QoQo = 0,      QiQi = 0,       [Qo, Qi] = 0,       (P1)» = 0,       [P\ Qi] = 0.

Let D he the exterior algebra generated by Qi; D is a normal [lO]

Hopf subalgebra of ^4i, and G = Ai//D is a tensor product of an ex-

terior algebra on e = Qo+AxD, and a truncated polynomial algebra on

a = P1+^41Z>. It is well known that

Exto*(Z„ Zp) = Zp[a] ® Ap[p] ® Z„[x],

where a£(l, 1), pQ(l, 2p-2), \Q(2, 2p(p-l)); similarly,

*,* r     |

Extß  (Zp, Zp) = Zp[ß\,

where |8G(1, 2p-l).

We can describe minimal resolutions for Zp over G and D very

easily: for the minimal resolution F=G®Fwe take a complex with

G-free generators [a*^i'Xm], where e = 0, 1, k, m = 0, 1, 2, • ■ • , and

define the differential d' as follows:

d'[akpXm] = e[ak-1pXm] + a[akXm],

d'[akXm+1] = e[o*-1XM+1] + a^aVX"1].

Similarly, for the minimal resolution W=D®W we take a complex

with D-free generators [ßr], r = 0, 1, 2, • • • , and differential ¿":

¿"M = Qilß^l
Remark. The reader is cautioned that we are using the (reason-

able) sign convention : any time two maps (with degree and grading)
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are switched past each other, we multiply by — 1 raised to the

product of total degrees. Example: a 2?-map/of degree 1 and grading

0 satisfies f(Qim) = — Qif(m).
We construct an ^i-resolution of Zp by introducing a suitable

differential d in Ai®Y®W (compare [8]). We let d= £*"=<, dk, where

do is induced by d":

áo[«VXro] ® [ßr] = (-iy[akp\m] ® Qi[ßr~l] = Qi[c¿p'\m] ® [ß*-1],

and dk, k^l, are defined as follows:

di([akp\m] ® [ßr]) = e[a*-VXm] ® [ßr] + a[ak\m] ® [ßT],

di([ak\m+1] ® [ßr]) = e[ak\m+1] ® [ßr] + a*-1[a*/íXm] ® [/3r],

á2([aVXm] ® [0r]) --(*"+ lHa^X»] ® [ßr+l],

dq([akp\<"] ® [/J']) = 0,        9 ^ 3,

dj([ak\m+l] ® [/3']) = (j - 1) ! f     . J a"-í[ai-'+VXm] ® D*4*"*],

for; â 2.

Since dt, ¿ = 0, 1, • ■ • , satisfy the conditions of Theorem 1 of [8],

Ai®Y®W yields an ^-resolution of Zp.

The elements [a],  [X],  [l]®[/H  [p]®[&], j = 0, 1, • • • , />-2
yield elements in Tori]*(ZP, Zp). Denote by a, X, w, pJ+i, j = 0, 1,

• ■ ■ ,p — 2, their duals in Ext*j*(Zj,, Zp). We then immediately have:

Proposition 5. Ext^Zj,, Zp) is a free Zp[o}]-module with a set of

free generators given by the elements

ak,        a'Xm,        pa\m,

wherek = 0, 1, 2, • • • , j = 0, 1, • • ■ , p — 2, 5 = 1, • • • , p — \. The ele-

ments satisfy the relations

aps = 0, a^X = 0.

The next proposition is now trivial.

Proposition 6.   (i) Ext%(AB, Zp) =0 if t<(2p-l)s-l, s>0;

(ii) multiplication by co is an isomorphism in Ext¿[(^40, Zp) for

t<(2p-l)s + 2p2-6p + l.

Corollary. If M is an Ai-module which is Ao-free, and Mt = 0 for

Km, then Ext%(M, Z„)=0 if t<m + (2p-\)s-\ and 5>0.

Remark. We cannot prove Proposition 6 (ii) for general A 0-free M.

However, it seems to be true for M=A/AA0: that is, Extx'(Zj,, Zp)

seems to be periodic in a small neighborhood of the line /= (2p — l)s
-2.
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4. Proof of Theorems 1 and 2. Write s = rp+i, i = l, ■ ■ ■ , p. Theo-

rem 1 is proved by induction on r. For r = 0 this is Proposition 2. We

suppose that the theorem has been proved for r' < r and all A 0-free

M; we then estimate the zeroes in dimensions rp+i by using Proposi-

tion 3. Here Proposition 4 gives an isomorphism with Ext^(M, Zp)

in a neighborhood of the line t = m + (2p — l)s — 2. According to the

corollary of Proposition 6, this enables us to prove that ExtA'(M, Zp)

= 0 for t<m + (2p — l)s — 1 for s = rp+i, i = l, • ■ ■ , p, which com-

pletes the inductive step.

Corollary 1 follows from the observation that N=A/AAo is So-

iree and Nt = 0 for t < 2p - 2.

Proposition 6(ii) and Proposition 4 with F(s) = (2p — l)s— 1 prove

the following:

Corollary 2. Ext^o, Zp)^Ex^A+M+3^-'(A0, Zv) for t<(2p-l)s

+2p2-6p + l.

Theorem 2 is an immediate consequence of Corollary 1 and the

Adams spectral sequence [l].

Remark. Theorem 2 shows that there are no elements of order

>p" in dimension r = 2pk(p — l) — l. Since the mod p Hopf invariant

is trivial for k>0 [7], there are no elements of order >pp~1 in these

dimensions. Theorem 2 should be compared with Theorem 7 of [6].
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