ZEROES OF THE COHOMOLOGY OF THE STEENROD ALGEBRA

ARUNAS LIULEVICIUS¹

1. Introduction. The paper is devoted to proving the analogue of the Adams' vanishing theorem [4] for the cohomology of the Steenrod algebra A over Z_p , where p is an odd prime. The result is used to obtain a better bound on the order of elements in the stable homotopy groups of spheres. The methods of proof are analogues of [4].

Let A_0 be the subalgebra of A consisting of 1 and Q_0 [9]; A_0 has a natural A-module structure consistent with the inclusion $A_0 \subset A$.

THEOREM 1. Let M be any A_0 -free A-module such that $M_t = 0$ for t < m. Then $\operatorname{Ext}_A^{t,t}(M, Z_p) = 0$ for t < m + (2p - 1)s - 1, $s \ge 1$.

COROLLARY 1. Ext_A^{s,t}
$$(Z_p, Z_p) = 0$$
 for $t < (2p-1)s-2$, $s \ge 1$.

THEOREM 2. Let Π_r^S be the rth stable homotopy group of the sphere, p an odd prime. Then Π_r^S contains no p-elements of order $> p^{[(r+2)/2(p-1)]}$.

2. Preliminary computations. Let A be the Steenrod algebra [9] over Z_p , p an odd prime. Let A_r be the subalgebra of A generated by 1 and Q_0 , P^{pk} , $k=0, \dots, r-1$ (we set $P^{-1}=0$, $A_{\infty}=A$). Each A_r is a Hopf subalgebra of A_s , $s \ge r$, therefore [10] A_s is free as a left (or right) A_r -module. The subalgebra A_0 is a left A_r -module, the module structure being consistent with the inclusion $A_0 \subset A_r$.

PROPOSITION 1. If $s \ge r$, then $A_* \otimes_{A_*} A_0$ is free as a left A_0 -module.

PROOF. Consider the graded dual A_s^* of A_s :

(1)
$$A_s^* = \Lambda_p[\tau_0, \cdots, \tau_s] \otimes_{Z_p} Z_p[\xi_1, \cdots, \xi_r]/I_r,$$

where I_r is the ideal in the polynomial ring generated by $\xi_1^{p^r}$, \cdots , $\xi_k^{p^{r-k+1}}$, \cdots , ξ_r (see [9]). The proof is completed by exhibiting $(A_* \otimes_{A_r} A_0)^*$ as a subspace of $A_*^* \otimes A_0^*$, and proving that the former is a free left A_0^* -comodule. For this purpose it is convenient to replace τ_i and ξ_j in (1) by $c(\tau_i)$, $c(\xi_j)$, where c is the conjugation antiautomorphism.

We wish to study the groups $\operatorname{Ext}_A(Z_p, Z_p)$. Let us write $\beta \in (s, t)$ if $\beta \in \operatorname{Ext}_A^{s,t}(Z_p, Z_p)$. These groups have been computed completely

Received by the editors July 15, 1962.

¹ The author holds a National Science Foundation postdoctoral fellowship.

in [5] for $t-s \le 2p(p-1)-1$. The results are as follows: there are classes

(2)
$$1 \in (0, 0), \quad \alpha_0 \in (1, 1), \quad h_i \in (1, 2p^i(p-1)), \\ \lambda_i \in (2, 2p^{i+1}(p-1)), \quad \rho_i \in (s, 2sp-s-1), \quad 2 \leq s \leq p,$$

such that the following elements constitute Z_p -bases for (s, *) in total degrees $t-s \le 2p(p-1)-1$:

The elements (2) also satisfy the relations

(4)
$$\alpha_0 h_0 = 0$$
, $\alpha_0 \rho_s = 0$, $\alpha_0^{p-1} \lambda_0 = 0$, $\alpha_0^p h_1 = 0$.

The information in (2)-(4) allows us to compute a good part of $\operatorname{Ext}_A(A_0, Z_p)$ (see [1]). In particular, we have

LEMMA 1.
$$\text{Ext}_{A}^{s,t}(A_0, Z_p) = 0$$
 for $1 \le s \le p$, $t < 2ps - s - 1$.

PROPOSITION 2. If M is an A-module which is A_0 -free and $M_t = 0$ for t < m, then $\operatorname{Ext}_A^{s,t}(M, Z_p) = 0$ for $1 \le s \le p$, t < m + 2ps - s - 1.

PROOF. In the spirit of Lemma 3 of [3]. Induction and Five Lemma.

PROPOSITION 3. Suppose that for any M as in Proposition 2 we have $\operatorname{Ext}_{A}^{s,t}(M, Z_p) = 0$ for t < m + F(s) for $s = 1, \dots, k$, then $\operatorname{Ext}_{A}^{s+t,t}(M, Z_p) = 0$ for t < m + F(k) + F(i), $i = 1, \dots, k$.

PROOF. Consider a minimal resolution [2] of M as an A-module. Let N be the module of (k-1)-cycles. Then $N_t=0$ for t < m+F(k). Since A and M are A_0 -free, so is N. Applying the hypothesis of the proposition to N, we have $\operatorname{Ext}_A^{i,t}(N, Z_p) = 0$ for t < m+F(k)+F(i), $i=1, \cdots, k$. The proof is completed by remarking that

$$\operatorname{Ext}_A^{i,t}(N,Z_p) \cong \operatorname{Ext}_A^{k+i,t}(M,Z_p).$$

COROLLARY. If M is any A_0 -free A-module with $M_t = 0$ for t < m, then $\operatorname{Ext}_A^{s,t}(M, Z_p) = 0$ for t < m + T(s), where s > 0 and $T(rp+j) = r(2p^2 - p - 1) + 2pj - j - 1$, $j = 1, \dots, p$.

PROPOSITION 4. Let $i: A_r \rightarrow A$ be the inclusion map. Under the hypotheses of Proposition 3 (with $F(s) \ge F(s-1)$)

$$i^* : \operatorname{Ext}_A^{*,t}(M, Z_p) \to \operatorname{Ext}_{A_r}^{*,t}(M, Z_p)$$

is an isomorphism for $t < m + F(s-1) + 2p^{r+1}(p-1)$, where $s = 1, \dots, k$.

PROOF. Consider

$$0 \to K \to A \otimes_{A} M \to M \to 0$$

since M and $A \otimes_{A_r} M$ are both A_0 -free (Proposition 1), so is K. Also $K_t = 0$ for $t < m + 2p^{r+1}(p-1)$. Thus $\operatorname{Ext}_A^{s,t}(K, Z_p) = 0$ for $t < m + 2p^{r+1}(p-1) + F(s)$. Since $F(s) \ge F(s-1)$ (a trivial assumption), the proposition follows from the remark that

$$\operatorname{Ext}_{A}^{s,t}(A\otimes_{A_{r}}M;Z_{p})\cong\operatorname{Ext}_{A_{r}}^{s,t}(M,Z_{p}),$$

for A is free as a right A_r -module [10].

3. The cohomology of A_1 . We wish to compute $\operatorname{Ext}_{A_1}(Z_p, Z_p)$; we shall use the method of [8]. Let $Q_1 = [P^1, Q_0]$ (see [9]); then we have the following relations:

$$Q_0Q_0=0$$
, $Q_1Q_1=0$, $[Q_0,Q_1]=0$, $(P^1)^p=0$, $[P^1,Q_1]=0$.

Let D be the exterior algebra generated by Q_1 ; D is a normal [10] Hopf subalgebra of A_1 , and $G = A_1/\!/D$ is a tensor product of an exterior algebra on $e = Q_0 + A_1\overline{D}$, and a truncated polynomial algebra on $a = P^1 + A_1\overline{D}$. It is well known that

$$\operatorname{Ext}_{G}^{*,*}(Z_{p},\,Z_{p})\,=\,Z_{p}\big[\alpha\big]\,\otimes\,\Lambda_{p}\big[\mu\big]\,\otimes\,Z_{p}\big[\lambda\big],$$

where $\alpha \in (1, 1)$, $\mu \in (1, 2p-2)$, $\lambda \in (2, 2p(p-1))$; similarly,

$$\operatorname{Ext}_{D}^{*,*}(Z_{p}, Z_{p}) = Z_{p}[\beta],$$

where $\beta \in (1, 2p-1)$.

We can describe minimal resolutions for Z_p over G and D very easily: for the minimal resolution $Y = G \otimes \overline{Y}$ we take a complex with G-free generators $[\alpha^k \mu^{\epsilon} \lambda^m]$, where $\epsilon = 0, 1, k, m = 0, 1, 2, \cdots$, and define the differential d' as follows:

$$d'[\alpha^k \mu \lambda^m] = e[\alpha^{k-1} \mu \lambda^m] + a[\alpha^k \lambda^m],$$

$$d'[\alpha^k \lambda^{m+1}] = e[\alpha^{k-1} \lambda^{m+1}] + a^{p-1}[\alpha^k \mu \lambda^m].$$

Similarly, for the minimal resolution $W = D \otimes \overline{W}$ we take a complex with D-free generators $[\beta^r]$, $r = 0, 1, 2, \cdots$, and differential d'':

$$d^{\prime\prime}[\beta^r] = Q_1[\beta^{r-1}].$$

REMARK. The reader is cautioned that we are using the (reasonable) sign convention: any time two maps (with degree and grading)

are switched past each other, we multiply by -1 raised to the product of total degrees. Example: a *D*-map *f* of degree 1 and grading 0 satisfies $f(Q_1m) = -Q_1f(m)$.

We construct an A_1 -resolution of Z_p by introducing a suitable differential d in $A_1 \otimes \overline{Y} \otimes \overline{W}$ (compare [8]). We let $d = \sum_{k=0}^{\infty} d_k$, where d_0 is induced by d'':

$$d_0[\alpha^k \mu^{\epsilon} \lambda^m] \otimes [\beta^r] = (-1)^{\epsilon} [\alpha^k \mu \lambda^m] \otimes Q_1[\beta^{r-1}] = Q_1[\alpha^k \mu^{\epsilon} \lambda^m] \otimes [\beta^{r-1}],$$

and d_k , $k \ge 1$, are defined as follows:

$$d_{1}([\alpha^{k}\mu\lambda^{m}] \otimes [\beta^{r}]) = e[\alpha^{k-1}\mu\lambda^{m}] \otimes [\beta^{r}] + a[\alpha^{k}\lambda^{m}] \otimes [\beta^{r}],$$

$$d_{1}([\alpha^{k}\lambda^{m+1}] \otimes [\beta^{r}]) = e[\alpha^{k}\lambda^{m+1}] \otimes [\beta^{r}] + a^{p-1}[\alpha^{k}\mu\lambda^{m}] \otimes [\beta^{r}],$$

$$d_{2}([\alpha^{k}\mu\lambda^{m}] \otimes [\beta^{r}]) = -(r+1)[\alpha^{k-1}\lambda^{m}] \otimes [\beta^{r+1}],$$

$$d_{q}([\alpha^{k}\mu\lambda^{m}] \otimes [\beta^{r}]) = 0, \qquad q \geq 3,$$

$$d_{j}(\left[\alpha^{k}\lambda^{m+1}\right]\otimes\left[\beta^{r}\right])=(j-1)!\binom{r+j-1}{j-1}a^{p-j}\left[\alpha^{k-j+1}\mu\lambda^{m}\right]\otimes\left[\beta^{r+j-1}\right],$$
for $j\geq2$

Since d_k , $k=0, 1, \cdots$, satisfy the conditions of Theorem 1 of [8], $A_1 \otimes \overline{Y} \otimes \overline{W}$ yields an A_1 -resolution of Z_p .

The elements $[\alpha]$, $[\lambda]$, $[1] \otimes [\beta^p]$, $[\mu] \otimes [\beta^j]$, $j=0, 1, \dots, p-2$ yield elements in $\operatorname{Tor}_{*,*}^{A_1}(Z_p, Z_p)$. Denote by α , λ , ω , ρ_{j+1} , j=0, 1, \cdots , p-2, their duals in $\operatorname{Ext}_{A_1}^{*,*}(Z_p, Z_p)$. We then immediately have:

PROPOSITION 5. Ext_{A1}(Z_p , Z_p) is a free $Z_p[\omega]$ -module with a set of free generators given by the elements

$$\alpha^k$$
, $\alpha^j \lambda^m$, $\rho_s \lambda^m$,

where $k = 0, 1, 2, \dots, j = 0, 1, \dots, p-2, s = 1, \dots, p-1$. The elements satisfy the relations

$$\alpha \rho_s = 0, \qquad \alpha^{p-1} \lambda = 0.$$

The next proposition is now trivial.

PROPOSITION 6. (i) Ext_{A₁}^{s,t}(A_0, Z_p) = 0 if t < (2p-1)s-1, s > 0; (ii) multiplication by ω is an isomorphism in $\operatorname{Ext}_{A_1}^{s,t}(A_0, Z_p)$ for

 $t < (2p-1)s+2p^2-6p+1$.

COROLLARY. If M is an A_1 -module which is A_0 -free, and $M_t = 0$ for t < m, then $\operatorname{Ext}_{A_1}^{s,t}(M, Z_p) = 0$ if t < m + (2p-1)s - 1 and s > 0.

Remark. We cannot prove Proposition 6 (ii) for general A_0 -free M. However, it seems to be true for $M = \overline{A}/A\overline{A}_0$: that is, $\operatorname{Ext}_A^{s,t}(Z_p, Z_p)$ seems to be periodic in a small neighborhood of the line t = (2p-1)s-2.

4. Proof of Theorems 1 and 2. Write s=rp+i, $i=1, \dots, p$. Theorem 1 is proved by induction on r. For r=0 this is Proposition 2. We suppose that the theorem has been proved for r' < r and all A_0 -free M; we then estimate the zeroes in dimensions rp+i by using Proposition 3. Here Proposition 4 gives an isomorphism with $\operatorname{Ext}_A^{s,t}(M, Z_p)$ in a neighborhood of the line t=m+(2p-1)s-2. According to the corollary of Proposition 6, this enables us to prove that $\operatorname{Ext}_A^{s,t}(M, Z_p) = 0$ for t < m + (2p-1)s-1 for s=rp+i, $i=1, \dots, p$, which completes the inductive step.

Corollary 1 follows from the observation that $N = \overline{A}/A\overline{A}_0$ is A_0 -free and $N_t = 0$ for t < 2p - 2.

Proposition 6(ii) and Proposition 4 with F(s) = (2p-1)s-1 prove the following:

COROLLARY 2. $\operatorname{Ext}_{A}^{s,t}(A_0, Z_p) \cong \operatorname{Ext}_{A}^{s+p,t+2p^2-p}(A_0, Z_p)$ for $t < (2p-1)s + 2p^2 - 6p + 1$.

Theorem 2 is an immediate consequence of Corollary 1 and the Adams spectral sequence [1].

REMARK. Theorem 2 shows that there are no elements of order $>p^{p^k}$ in dimension $r=2p^k(p-1)-1$. Since the mod p Hopf invariant is trivial for k>0 [7], there are no elements of order $>p^{p^k-1}$ in these dimensions. Theorem 2 should be compared with Theorem 7 of [6].

REFERENCES

- 1. J. F. Adams, On the structure and applications of the Steenrod algebra, Comment. Math. Helv. 32 (1958), 180-214.
- 2. ——, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104.
- 3. —, A finiteness theorem in homological algebra, Proc. Cambridge Philos. Soc. 57 (1961), 31-36.
 - 4. ——, Stable homotopy theory (lecture notes), Berkeley, Calif., 1961.
- 5. H. Gershenson, Some relationships between the Adams spectral sequence and Toda's calculations of the stable homotopy of spheres, Dissertation, Univ. of Chicago, Chicago, Ill., 1961.
- 6. I. M. James, On the homotopy groups of spheres, Symposium Internacional de Topologia Algebraica, Mexico, 1958, 222-224.
- 7. A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962), 113 pp.
- 8. ——, The cohomology of a subalgebra of the Steenrod algebra, Trans. Amer. Math. Soc. 104 (1962), 443-449.
- 9. J. Milnor, The Steenrod algebra and its dual, Ann. of Math. (2) 67 (1958), 150-171.
 - 10. J. Milnor and J. C. Moore, On the structure of Hopf algebras (to appear).

THE UNIVERSITY OF CHICAGO AND
THE INSTITUTE FOR ADVANCED STUDY