A WILD SPHERE WHICH CAN BE PIERCED AT EACH POINT BY A STRAIGHT LINE SEGMENT

M. K. FORT, JR.1

In this note we describe a wild 2-sphere S in E³ which can be pierced at each point by a straight line segment. The existence of such a wild sphere answers the following question which was raised by R. H. Bing in his address *Embedding surfaces in 3-manifolds* at the 1962 International Congress of Mathematicians in Stockholm:

Is a 2-sphere in E^3 tame if it can be pierced at each point by a straight line interval?

In order to make the description of S as concise as possible, we make use of the terminology and notation of [2], the author's modification of Bing's well-known "Dog Bone Decomposition" (see [1]). We let G be the decomposition space defined in [2], and let A_0 be the union of the nondegenerate elements of G. It is possible to carry out the construction of A_0 in such a way that the endpoints of the components of A_0 lie in two parallel planes, and we assume that this is the case. We can represent $A_0 = \bigcap_{n=0}^{\infty} B_n$, where each set B_n is the union of 2^n admissible polyhedra (see [2, p. 502, Figure 1]) $P_1^n, P_2^n, \cdots, P_{2^n}^n$. Now, if (in the notation of [2]) P_j^n is represented as $L \cup M \cup R$, we define Q_j^n to be (basic parallelepiped of L) $\cup M \cup$ (basic parallelepiped of R). We now define S to be the boundary of

$$\bigcup_{n=0}^{\infty} \bigcup_{j=1}^{2^n} Q_j^n.$$

It is easy to see that S is a "horned" 2-sphere and hence is wildly imbedded in E^3 . A_0 is contained in the union of S and the bounded component of E^3-S , and for each component C of A_0 the set $C \cap S$ consists of the endpoints of C.

If $p \in A_0 \cap S$, then we can pierce S at p by extending the component C of A_0 which contains p. On the other hand, if $p \in S - A_0$, then S is locally polyhedral at p and can certainly be pierced by a line segment at p.

In view of the above example, R. H. Bing has raised the following two questions:

(1) Is a topological 2-sphere S in E^3 tame if corresponding to each point $p \in S$ there are Euclidean (round) spheres σ_1 and σ_2 containing p such that $\sigma_1 - p$ and $\sigma_2 - p$ lie on opposite sides of S?

Received by the editors September 8, 1962.

¹ This work was supported by NSF Grant G23790.

(2) Is a topological 2-sphere S in E^3 tame if corresponding to each point $p \in S$ there are cones γ_1 and γ_2 , each with vertex at p, such that $\gamma_1 - p$ and $\gamma_2 - p$ lie on opposite sides of S?

BIBLIOGRAPHY

1. R. H. Bing, A decomposition of E^3 into points and tame arcs such that the decomposition space is topologically different from E^3 , Ann. of Math. (2) 65 (1957), 484-500.

2. M. K. Fort, Jr., A note concerning a decomposition space defined by Bing, Ann. of Math. (2) 65 (1957), 501-504.

University of Georgia

CORRECTION TO "A CHARACTERIZATION OF OF-3 ALGEBRAS"

HIROYUKI TACHIKAWA

J. P. Jans is kind enough to inform me a gap of Necessity proof in my paper appearing in these Proceedings, 13 (1962), 701-703. In this note I shall report Theorem 2 in the paper is however valid by a slight alteration of the proof. In p. 702, the argument between line 9 and line 18 should be replaced by the following: Let e_{λ} be a primitive idempotent of A such that $l(N)e_{\lambda}\neq 0$. Then there exists an element $x \in L$ such that $l(N)e_{\lambda}x \neq 0$ for L is faithful. Denote x by $\sum_{\kappa \neq \lambda} a_{\kappa} e_{\kappa} + a_{\lambda} e_{\lambda}, \ a_{\kappa}, \ a_{\lambda} \in A. \ \text{Since} \ e_{\lambda}(\sum_{\kappa \neq \lambda} a_{\kappa} e_{\kappa}) \subseteq N, \ l(N) e_{\lambda} x$ $=l(N)e_{\lambda}a_{\lambda}e_{\lambda}$ and we have $l(N)e_{\lambda}Le_{\lambda}\neq 0$. Here, suppose $Le_{\lambda}\neq Ae_{\lambda}$. Then $Le_{\lambda} \subseteq Ne_{\lambda}$ for Ne_{λ} is the unique maximal left ideal of Ae_{λ} and it follows $l(N)e_{\lambda}Le_{\lambda}\subseteq l(N)N=0$. But this is a contradiction. Thus we obtain $Le_{\lambda} = Ae_{\lambda}$. Now, let θ be the epimorphism: $L \rightarrow Le_{\lambda} (= Ae_{\lambda})$, defined by $\theta(x) = xe_{\lambda}$ for all $x \in L$. Since Le_{λ} is projective, we have a direct sum decomposition of $L: L_{\lambda} \oplus L'_{\lambda}$, where $L_{\lambda} \approx Ae_{\lambda}$. Then as $\operatorname{Hom}(L, K)$ is monomorphic to P and $\operatorname{Hom}(Ae_{\lambda}, K)$ is injective, $\operatorname{Hom}(Ae_{\lambda}, K)$ is isomorphic to a direct summand of P. Thus if we denote by Λ the set of all indices λ such that $l(N)e_{\lambda} \neq 0$, $\operatorname{Hom}(\sum_{\lambda \in \Lambda} Ae_{\lambda}, K)$ is projective.