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1. Introduction. A Lie isomorphism d> oí a ring R onto a ring R'

is a one-one additive mapping of R onto R' which preserves commu-

tators, i.e.,

(1) <b(x + y) = <b(x) + 4>(y),

(2) <b(xy - yx) = d>(x)d>(y) - <p(y)<i>(x)

for all x, yQR. In this paper we study Lie isomorphisms of a primi-

tive ring R onto a primitive ring R', where we assume that the char-

acteristic of R is different from 2 and 3 and that R contains three

nonzero orthogonal idempotents whose sum is the identity. Such iso-

morphisms will be shown to be of the form o+r, where a- is either an

isomorphism or the negative of an anti-isomorphism of R into a

primitive ring V containing R' and t is an additive mapping of R

into the center of L' which maps commutators into zero. This gen-

eralizes a theorem of Hua [l], who obtained the above result in the

case that R ( = R! =L') was the ring of all «X« matrices over a divi-

sion ring, «>2. On the other hand, due to our requirement concern-

ing idempotents, we fall far short of providing a general solution to

Herstein's conjecture [2] that the result holds for arbitrary simple

rings.

An important part of our proof consists of a repetition of argu-

ments involving matrix units used by Hua [l], and for the sake of

completeness (and also because of the relative inaccessability of Hua's

paper) we shall reproduce his proofs in some detail when the occasion

demands.

The author is especially grateful to Professor Nathan Jacobson for

several valuable comments towards improving an earlier version of

this paper. In the case of simple rings he indicated how all calcula-

tions involving matrix units can be eliminated, and he suggested ex-

tending our original result to the more general case of primitive

rings.

2. Preliminary results. Let L he the ring of all linear transforma-

tions of a (possibly infinite dimensional) vector space V over a divi-

sion ring A. Under the finite topology [3, pp. 248-250] L is a topo-

logical ring. Let S be any subset of L and C= {ci, c2, • • • , cP\ a
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finite subset of L. We shall say that 5 satisfies a polynomial identity

with respect to C in case there exists a nontrivial polynomial/ (p+g

noncommutative indeterminates, integral coefficients) such that

f(ci, c2, ■ ■ ■ , cp, Xi, x2, ■ • • , xq) =0 for all XiES. As an easy conse-

quence of the above notions we have

Lemma 1. If a subset S of L satisfies a polynomial identity with

respect to C, then the closure C\(S) of S satisfies the same polynomial

identity with respect to C.

If x and y are elements of a ring, the commutator xy — yx will often

be abbreviated by [xy\.

Following Hua [l, p. 145] we define an element a of L to be an I-

element in case a = z+e, where z lies in the center Z of L and e is

an idempotent in L. Lemma 1 will enable us to carry over Hua's

proof [l, p. 146, Theorem 22] of

Theorem 1. Let R be a dense subring of L of characteristic ?±2, 3,

and let a be an element of L. Then a is an I-element if and only if

(3) [[xa]a]a] = [xa]       for all x E R-

Proof. If a is an I-element it is straight forward to verify that (3)

holds. Conversely, if (3) holds, we have by Lemma 1

(4) [[[xa]a]a] = [xa]        for all x E L

since Cl(2?) =L. Relative to a basis for V the elements of L may be

considered as row-finite matrices with entries lying in A. We can thus

write

a = (ciij),       a   = (ctij ),       efj = unit matrix G L,

where i and j range over some index set N. We set x =Xe¿,-, \£A, and

obtain in particular from (4)

(5) an Actpq = otijAapq , I ^ J, p 7a q,

and

(6) atj X — ctijA — 3a,j \ctkk — 3ctij\,       i 9e j, all k.

(5) and (6) hold for all \£A. If <j££Z there exists a nonsingular matrix

uEL such that u~lau has a nondiagonal entry different from zero.

Since relation (4) and the property of being an I-element are pre-

served under inner automorphisms of L, we may assume without

loss of generality that ai29^0. If a^^O, p^q, (5) yields

-1    (2) (2)   -1

«12 «12 A = Aapa ctP2
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for all X£A. Thus ai$)qa~11 = ßQ-$, where $ is the center of A and ß is

independent of p and q, whence

(7) aPq  = ßapq.

If apq = 0, from (5) a(P¡ = 0, and so (7) is true for all p9^q. Setting

X = 1 in (6) we have

(3) ,    (2) , (2) -    (2) (Î)
«12  — «12 = 00:12 an — 3ai20¡n   = ¿cti2 akk — àauptkk

from which we obtain (since char. $^3)

(2) (2) (2)
«12  («11 — Ctkk)   = «12(.0!ll    — OCkk )

and with the aid of (7)

(8) an  — akk  = ß(an — akk).

From (7) and (8) it is easy to see that

2 (2)

a  — an 1 = ß(a — «ni).

We can then write

(9) a2 = ßa + 71, ß Q $, 7 G A,

(10) a' = (ß2 + y)a+(ßy)l.

We choose an xQL such that (yl)x — x(yl) =0 but xa — ax^O (e.g.,

x = eK will work since we are still assuming au^O). Now substitution

of (9) and (10) in (4) yields

(ß2 + 47) (xa — ax) = xa — ax

or

(11) ß2 + 47 - 1 = 0.

Using (9) and (11) one verifies that e = a+\(l—ß)l is an idempotent

and thus a = z+e, where z = \(ß — 1)IQZ. Q.E.D.
Another result (and proof) due to Hua [l, p. 155, Theorem 25] we

shall find useful is

Lemma 2. Let Rbea dense subring of L, and let a and b be idempotents

of L such that ab = ba and

(12) [[[M*H&] + [M*] - o

for all xQR. Then either ab = 0 or (1 —a)(l — b) = 0.
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Proof. By Lemma 1, (12) holds for all xEL. Multiplication of (12)

on the left by ab then gives us

abxab — abxb — abxa + abx = 0, x E L.

Factoring, we have abx(i— a)(l— b) =0. Since it is well known that

L is a prime ring, either ab = 0 or (1 — a)(l— b) =0.

3. Idempotents under Lie isomorphism. Henceforth in this paper

we shall suppose that R is a primitive ring of characteristic different

from 2 and 3 and containing three nonzero orthogonal idempotents

ei, e2, and e%, whose sum is the identity. We assume further that there

exists a Lie isomorphism <p of R onto a primitive ring R'. R will always

be treated as a dense subring of the ring L of all linear transforma-

tions of a vector space V over a division ring A. Similarly we shall

consider R' as a dense subring of the ring 1/ of all linear transforma-

tions of a vector space V over a division ring A'. It is clear that the

characteristic of R' must necessarily be different from 2 and 3. We

remark also that if tj>(x)EZ', the center of L', then xEZ, the center

of R.

Theorem 2. Either

(Case 1) 4>(ei) = Zi + fi, i = 1, 2, 3,

or

(Case 2) d>(ei) = z< — /,-, i = 1, 2, 3,

where ztEZ', {/,} orthogonal idempotents of L', and fi+f2-\-f3 = l.

Proof. Set #(«,)= g,-. Since [[[xe¿]e,]e¿]= [xe<] for all xER and <p

is onto, it follows from (2) that [[[ygi]g<]gt] = [ygi] for all y ER'. By

Theorem 1, gi = Zi-\-ft, ZiEZ', fi idempotent in V, i= 1, 2, 3. A direct
calculation shows that [ [[xei]e3]e,]ey]+ [[xei]ey] = 0 for all xER,

i*j. Since ZkEZ' we have from (2) that [ [ [ [y/.-fc]/,]/,] + [[y/,]/y] = 0
for all yER', i^j. Also, from [e.-c,-] = 0, we see that [fifj] = 0. Lemma

2 then says that either fifj = 0 or (1— ft)(I— //) = 0. Suppose /i/2

=/i/3 = 0 but (l-/2)(l-/3) = 0. Then/1=/1(l-/î)=/1(l-/i)(l-/,)

= 0, a contradiction. Therefore either $(e,-) = z¿ + f;, {fi} orthogonal

idempotents, i=\, 2, 3, or <p(e/) =z¿+/¿= (z,-+l) — (1— /¿)=a\- — A,-,

WiEZ', {hi} orthogonal idempotents, t=l, 2, 3. Finally, from

0= [x, l]= [x, ei+e2+e3] for all xER, we see that [y, fi+f2+fi] = 0

for all yER'- By Lemma 1 [y,/i+/2+/3] = 0 for all yEL', and so the

idempotent/1+/2+/3 lies in Z' and must be equal to 1.
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4. Definition of a and t. Throughout this section and the next we

assume that Case 1 holds, i.e., <p(ei) =z<+/<, *= 1, 2, 3. We also intro-

duce the notation i?<3 = e,i?ey, R¡]=fiR'fi, and Ly=/,L'/y. Clearly

R = @ Z)«-i Rih and, in view of Theorem 2, L' = ® ]T)«_i L\¡. We
have made as yet no claim that R¡jQR', but in any case R\} is a dense

subset of L't].

Lemma 3. <t>(Rij)QR¡j, i^j.

Proof. Let xQRa and set y = <p(x). Since x= [e»[xe3] ] and x= [e,x]

we have

v - UM] = Ajtfc +M< = fi(Uy - yfùfj +M0 - yfdft

= f<yfj - fûU

Therefore y=fiyfjQR¡j, since char. R'^2.

Lemma 4. <j>(Rkk)QL'u+L22+L^.

Proof. We may assume that k — 1. Let ïG^n and write <p(x) =y

= Xrti-i y»7> where yaQL'i}. From [xe2]= [xe3]=0 we conclude that

[y/2]=yi2+y32-y2i-y23 = 0 and [y/3]=yi3+y23—y3i—y32 = 0. Hence

y<, = 0, ijtj, i.e., yQL'ii+Ln+L'33.

Since 4> is onto Lemma 3 and Lemma 4 imply

Lemma 5. <t>(Ra) = R'(JQR', i^j.

Lemma 6. #(.&*) ÇZ^+Z'.

Proof. Assume k=l, let aG:i?u, and set b = <p(a). [xa] = 0 for all

xQR23+R3i, and in view of Lemma 5, [yo] = 0 for all yQR23+R32-

Now, by Lemma 1, [yb]=0 for all yQC\(R23+R32)=L'23+L'32. Since

Cl (L23L32) = L22 and Cl (L'32L23) = 14, we have [yb} = 0 for all y Q L& +L23

+L'32+L'33=(f2+f3)L'(f2+f3) = M. By Lemma 4, b = bx+c, hQL'n,
cQM, and so [yc] = 0 for all yQM. As the center of M is equal to

(fi+f3)Z', we can then write c=(fi+f3)z, zQZ'. Therefore we have

finally b = bi+c=(bi-fiz) + (fi+f2+f3)z=(bi-fiz)+zQL'n+Z'.
To summarize our results thus far we have shown that

(13) if x G Ru,       i 7a j, then<i>(x) = x  Q R'h,

(14) if x G Ru,       then <b(x) = x  + z, x  Q Lu, zQ Z .

We note that in (14) x* and z are uniquely determined. Indeed, if

<p(x)=x*+z = y+w, yQL'u, wQZ', then x*-yQZT>L'H = 0. Hence

y — x* and w = z.
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Relations (13) and (14) then enable us to define in a natural way

a mapping <r of R into L' according to the rule

o~(x) = x*, x E Ru, all i, j.

A mapping t of R into Z' is then defined by

r(x) = d>(x) — o-(x), x E R.

5. Properties of a and t. We continue to assume that Case 1 holds.

Lemma 7. a(x+y)=<r(x)+<r(y) for all x, yER.

Proof. It suffices to show that a is additive on Rkk- If x, yERkk we

have a(x + y) — a(x) — a(y) = <p(x + y) — r(x + y) — <p(x) + t(x)

- <p(y) + r(y) = r(x) + r(y) - t(x + y) E ¿Ú H Z' = 0. Thus

<r(x+y) =<t(x) +<r(y).

Corollary. r(x+y) =t(x) +r(y), x, yG2?.

Lemma 8. r(xy —yx) = 0 for all x, yER-

Proof. Suppose xERn- If yERij, (i,j)yá(2, 1), then xy—yxERvq,
py^q, and r(xy — yx) =0. If yE2?2i, r(xy—yx) =^(xy — yx) — <r(xy — yx)

= <p(x)<p(y) — <p(y)<p(x) — a(xy — yx) =o~(x)a(y) — a(y)cr(x) —a(xy — yx)

EL'u-\-L'22. Since r(xy — yx)EZ', it follows that r(xy — yx) =0. In gen-

eral, if xERij, iy^j, then r(xy—yx) = 0 for all yER-

Next suppose that xERn- We have already shown that if yERn,

Í5¿j, then r(xy — yx)=0. Clearly r(xy —yx) = 0 in case yER22 or

y G 2?33- If y G 2?n, we have r(xy — yx) = <p(xy — yx) — a(xy — yx)

= o-(x)cr(y) — <r(y)o-(x) — <r(xy — yx) G L'n. Since r(xy — yx) G Z',

r(xy — yx) = 0. The same argument holds in case xG2?22 or xG2?33- We

conclude that r(xy — yx) = 0 for all x, yER-

Corollary. a(xy—yx) — a(x)<r(y) — a(y)cr(x) for all x, yER-

Lemma 9. Let xERn, i^j, and yER- Then ff(xy)=a(x)a(y) and

a(yx)=a(y)a(x).

Proof. We may assume that xG2?i2. For yG2?i2, we have cr(xy)

= <r(0) = 0 = (r(x)(r(y) and, similarly, a(yx) =a(y)a(x). Thus suppose

yERn, (i,3)^(1, 2). Then xyERu, cr(x)EL[2, a-(y)EL'n, and so we

see that both a(xy) and <r(x)<r(y) are elements of L[¡. Similarly cr(yx)

and <j(y)a(x) lie in L'i2. Using the corollary to Lemma 8 we have

ff(xy) — cr(yx) — cr(xy — yx) = <r(x)a(y) — <r(y)cr(x). Therefore ar(xy)

-<r(x)<r(y) =a(yx) — o-(y)<x(x)EL^CW^Qand the conclusion follows.

Theorem 3. a is an isomorphism of R into V.
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Proof. In order to verify that a(xy) =<r(x)er(y) for all x, yQR, we

need only, in view of Lemma 9, consider the case where xQRn and

yQRkk. If yQRn or yQR33 we have o(xy) =0 = a(x)<r(y). Thus assume

yQRn. If rQRn, repeated use of Lemma 9 enables us to write

o(r) [o(xy) — o(x)<r(y) ] = a(r)a(xy) — o-(r)<r(x)o-(y) = <r(rxy) — (j(rx)o-(y)

= o(rxy) —<r(rxy) =0. Hence R2X[o(xy) — a(x)o(y)] = 0, and, by Lemma

1, L'21[o-(xy) -cr(x)o-(y)] = 0. Since/iGLÍi = Cl(LÍ2Z4) we have cr(xy)

-o(x)o(y) =fi[<r(xy)-ar(x)o(y)] = 0, i.e., a(xy) =a(x)a(y).

It remains to show that <r is one-one. Suppose o(x) — 0 for some

xQR. Theno-(xy) =a(x)a(y) = 0for all yQR, and so <¡>(xy) =j(xy)QZ'.

It follows that xyQZ and in particular that xQZ and xeiQRni\Z.

Thus xei = 0, and, since xGZ, x = 0.

6. Treatment of Case 2. In this section we assume that Case 2

holds, that is, <p(e¡) =z{— /¿, i = l, 2, 3 (see Theorem 2). Let 0 be an

anti-isomorphism of V onto a ring L" (such exists). Then — 9 is

easily seen to be a Lie isomorphism of V onto L", whence ^= — 9<p is

a Lie isomorphism of R onto a subring R" of L". Furthermore

yf/(ei)= -d(zi-fi)= -6(zi)+d(fi)=Wi+gi, {g,} orthogonal idem-
potents of L". Since Case 1 arguments apply to \p we have by Theo-

rem 3 and Lemma 8 that yp = a+T, where a is an isomorphism of R

into L" and t is an additive mapping of R into Z" which maps

commutators into zero. Hence —6<p = o+T, from which we obtain

0= —6~1o—ô~1t = (ï'+t', where a' is the negative of an anti-isomor-

phism of R into L' and t' is again an additive mapping of R into Z'

which maps commutators into zero.

7. The main result and special cases. From Lemma 8, Theorem 3,

and the discussion of the preceding section it is clear that we have

completed the proof of

Theorem 4. Let </> be a Lie isomorphism of a primitive ring R onto a

primitive ring R', where the characteristic of R is different from 2 and 3

and R contains three nonzero orthogonal idempotents whose sum is the

identity. Then <j> is of the form cr+r, where a is either an isomorphism

or the negative of an anti-isomorphism of R into a primitive ring L' con-

taining R' and r is an additive mapping of R into the center of L' which

maps commutators into zero.

Consider now the special case of Theorem 4 in which R and R' are

simple. Using again notation introduced earlier and for simplicity

assuming Case 1, we point out that the subring of R generated by the

union of the 22y, iV/, is actually an ideal of R and hence equal to R.

Since a is an isomorphism and a(Ra)QR', if^j, it follows that
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a(R)QR'. Similarly the subring generated by the union of the R[},

i^j, is an ideal of R' and thus equal to R'. Since a(R,j)=R¡]t i^j,

we conclude that a(R)=R'. We have thereby proved

Theorem 5. Let 4> be a Lie isomorphism of a simple ring R onto a

simple ring R', where the characteristic of R is different from 2 and 3

and R contains three nonzero orthogonal idempotents whose sum is the

identity. Then <p is of the form cr+T, where a is either an isomorphism

or the negative of an anti-isomorphism of R onto R' and t is an additive

mapping of R into the center of R' which maps commutators into zero.

We conclude by illustrating Theorem 4 with an example of a Lie

automorphism <j> of a primitive ring R such that <r(R) is not contained

in R. Let A be the field <i>(x, y), <3? the field of rationals, and let ß be

the subfield <£(x). We take R to be the ring of all countably infinite

matrices of the form A+D, where A = (a,-/), a¿,GA, only a finite num-

ber of the an unequal to zero, and 2) = diag{¿, d, d, • • • }, ¿Gß- If

aij=fij(x, y) we let âij=/iJ(y, x). We define a mapping <f> of R onto

itself by

4>(A + D) = J + D

where A = (an), <p is easily seen to be a Lie automorphism of R and

may be written in the form <x-\-t according to Theorem 4. One may

verify that a(A) = A for all A. Now let 2? = diag{x, x, x, • ■ ■ }. <r(D)

must then be of the form diag{c, c, c, ■ • ■ }. If A =diag{x, 0, 0, • • • }

theno-04)=diag{y, 0, 0, • ■ • }. From <r(A)a(D) =<r(AD) =<r(A2) we

obtain diag{yc, 0, 0, • ■ • } =diag{y2, 0, 0, • • • }. It follows that

c = y and ¡r(D) =diag}y, y, y, ■ • ■ }. Hence a(R) ç£2?.

Bibliography

1. L. Hua, A theorem on matrices over an sfield and its applications, J. Chinese

Math. Soc. (N.S.) 1 (1951), 110-163.
2. I. N. Herstein, Lie and Jordan structures in simple associative rings, Bull.

Amer. Math. Soc. 67 (1961), 517-531.
3. N. Jacobson, Lectures in abstract algebra, Vol. 2, Van Nostrand, New York, 1953.

Smith College


