SOME BOUNDARY VALUE PROBLEMS FOR
LINEAR DIFFERENTIAL SYSTEMS!

W. J. COLES

1. Introduction. Let A(¢) and f(t) be X% and #X1 matrices,
respectively, continuous on an interval [a, ]. In [1], J. B. Garner
and L. P. Burton consider the boundary value problems

1) y = Ay +f, yi(a) = B; (1 =i < n), ¥a(8) = Ba

and

2 ¥ =Ady+f, yn) =81, )= (1<i<mna<c<b),
y"(b) = ﬁn’
and prove:

THEOREM A. If, for eachiand j (1 Si<n, 1 Sj<n, 15]), 6:j0:najn>0
and @in@ni>0 on [a, b], the problem (1) has a unique solution;

THEOREM B. Under certain conditions on A(t), too lengthy to give
here, the problem (2) has a unique solution.

The authors note that Theorem A has a dual in which the roles of
¢ and b are interchanged, provided that a,;6:,8;, <0 is assumed.

The purpose here is to obtain theorems corresponding to Theorem
A and its dual, with considerably less restriction on 4 (¢), and to use
these results to obtain as a direct consequence a theorem correspond-
ing to Theorem B.

2. The two-point problem. As usual, we rephrase the problem in
terms of the homogeneous system. Let N be fixed (1S N=#); let
Q=(8;~6;n), and let P=E—Q (E being the nXn identity); let
B=col(B;). Let z(¢) be a solution of ' = Ay-+f which does not satisfy

3) y =A4y+f, Py(a) + Qy() = 8.

If X is any nonsingular solution of X’=A4X, the general solution of
y'=Ay-+f can be written in the form Xc+z, and our boundary con-
dition reduces to

[PX(a) + QX(b)]-¢c = B — Pz(a) — Qs(b) = O.
Thus (3) has a unique solution if and only if the equation X’=4X
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has a nonsingular solution for which PX(a)+ QX (b) is nonsingular.
We may assume that X(a) =E; our condition is then that xx(b) %0 if
x'=Ax and x;(a) =0y (1=i=n).

For convenience we list the following conditions and definitions.

0) au(t)=0 (1=2=n).

(I) For N fixed (1=N=n), there exist K#N (1=K=#n) and
mg (1 =mxg Sn—1) such that no product ak; (f0)@j,;,(t) - - - @;,w(tm),
with at most mx 1 factors, changes sign on ¢ £4,=<b (0<7=<m), each
such product has the same sign, and one such product, with at most
mx factors, is nonzero at t=a. Let sgxy be 1 or —1, according as this
last product is positive or negative at t=a; let syy=1.

(IT) For N fixed, (I) holds for each K#N; sgnank(t) =0; the
mg’s may be taken equal.

(II1) x'=Ax and x;(e)=8;xy (1 Zi=Zn).

LemMA 1. If x'=Ax and (0) holds, and if, for a fixed j;, o; is the
set of integers including 1, - - -, n, but excluding j;, then

@ 5 =@+ X [ anmt)nman

J1€0g a
m to

(4i) m(t)) = () + 22 20 - 2 f dty - -
h=1 ji€ag JhEop-1 a

th—a th—1 h—1
. f dth—1 f x;,(@) H @i (big1) dtn

=0
to
£ ... f dhy -

J1€0q Im+1€0m

tm—1 tm m
: f dtmf L1 (1) H afei.'+1(ti+l)dtm+b mz1.
a a =0
PRroor. Integration of x; gives (4i) and, in fact, a similar expression
for each x;,. Substituting these expressions into the right-hand side
of (4i), and continuing the process, gives (4ii).

LeMMA 2. If (0), (1), and (111) hold, there is a > O such that sgnxx ()
>0 o0n (a, a+9).

Proor. In (4), let jo=K and jnu1=N. By ‘(III), the first term in
each of (4i) and (4ii) is zero. Since all possible products with m-1
factors and of the type in (I) occur in the last set of terms in (4i) or
(4ii), proper choice of m will cause to appear a product involving xy
which is nonzero at a. This term, and indeed all terms involving xy,
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have the sign of sxn. All other terms in the last set are zero at a;
all nonzero terms in the second set of terms in (4ii) involve xx(a),
and so have the sign of sgx. Hence, for small positive 8, sgxxx(t) >0
on (a, a+8).

CoroLLARY 1. If (0), (II) and (111) hold, there is a 6 >0 such that
©] savai(t) > 0 1215 n)
on (a, a+9).

Lemwma 3. If (0), (II) and (111) hold, then (5) holds on (a, b].

Proor. By Corollary 1, there is a § such that 0<é<b—a and
for which (5) holds on (a, a+9). Let a<c<a+$4, and let P(t)=
x1(2) - - - x.(t). Then

t n
P(t) = P(C) €xp E dijj/xkdt
c k,j=likxj

on (¢, a+9). Now, for each k and j such that k#j, we have a;x;/xx
=0. Indeed, if k=N or j= N this follows from the condition s;yax:(t)
=0 in (II) and from the conclusion of Lemma 2. If 5% N and 2% N,
let m be the common value of the m;’s in (II). There is a product
P;xy of the form in (I) (with K =3), with at most m factors, such that
s;nPjn(a) > 0. Since ax;P;y is a product like those in (I), with at most
m-1 factors, we have synyar;P;y=0. Hence we can write awx;/xx
= [ax;Pin(a)/x:]- [x;/P;in(a)], with each factor non-negative. Thus
the statement is verified. From this, lP(t)] = |P (c)I on (¢, a+3).
Since the inequality must hold even for t=a+8, then P(a-+0)#0.

Now let A be the lub of the set of §’s such that 0<8<b—a and for
which (5) holds on (a, a+8). Clearly (5) holds on (a, a+4), and so (by
the above argument) (5) holds at £=a-+A. Unless A=b—a, the con-
tinuity of P(#) gives a contradiction to the lub property of A. This
completes the proof.

The following theorem, corresponding to Theorem A, is now almost
immediate.

THEOREM 1. If (I1) holds for products excluding the a:;(t)’s, the prob-
lem (3) has a unique solution.

ProoF. The proof depends only on Lemma 3, and so we must show
that Lemma 3 holds even without condition (0). To this end, let
2(t) =G(t)x(¢), where x(t) satisfies (I1I) and G(¢) is the diagonal matrix
for which g.:(t) =exp [{—ai:(s)ds. Then 2’ = B(t)z, where b;:(t) =0 and,
for i7j, bi;j(t) =a;(t) exp [}[aii(s) —aii(s)]ds. Thus if (II) holds for
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A(t) then (II) holds for B(¢), with the same si's; if (III) holds for
x(t) then (I1I) holds for z(¢); and (0) holds for B(f). Thus Lemma 3
as it stands applies to z(¢), and also, since x:(t) =3:(t) exp [lai(s)ds,
to x(¢). Thus condition (0) can be eliminated from Lemma 3, and the
proof is complete.

The theorem corresponding to the dual of Theorem A is contained
in the following statements. Corresponding to (I), (1I), and (III) we
have:

(I") As (1), except that the products with an odd number of factors
and those with an even number of factors differ in sign, and there is
at least one product, say with r factors (r Smg), which is nonzero at b.
Let (—1)"sky be 1 or —1 according as this last product is positive
or negative at b. Let syy=1.

(I1") For some fixed N, (I) holds for each K=N (1=K=<#n);
aygsgy =0; and the mg's may all be taken equal.

(II1") 2’ =Ax, and x;(0) =8;5y (1 ZiZn).

LemMma 2'. If (0), (I') and (1I1') hold, there is a 6>0 such that
sknxx(t) >0 on (b—4, b).

PRroOF. The proof is like that of Lemma 2, using (4). Alternatively,
let A(t)=A(b) for t>0b; let s=2b—1t, B(s)=—A(t), and w(s)=x(t);
and apply Lemma 2 directly to the system w'(s) =B(s)w(s) on the
interval [b, 2b—a].

LemwMma 3'. If (0), (1) and (111') hold, then

) sive)) >0 (1SS n)
holds on [a, b).

TueoreMm 1. If (11') holds for products excluding the a::(t)’s, the
problem

3 y =Ady+f, 0y + Py(b) =8
has a unique solution.

Theorem 1 implies a stronger version of Theorem A, since the
hypotheses of Theorem A imply (II) for each N. Further, coefficient
matrices with vanishing entries can be treated; in particular, known
theorems (e.g., see [2] and [3]) for the nth order scalar case are
implied.

3. The three-point problem. Let a <c<b.
THEOREM 2. Let M and N be fixed 1= M=n, 1SN=n, M#N).
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Let (I1) hold on [c, b] and (11") hold on [a, c] for products excluding the
a;i(t)’s, for N and also for M, with sunsyy=—1. Let R= (6.‘M6,'M),
Q= (8:x0;x), and S=E—R—Q. Then the problem

) ¥ =A4y+f, Q@) + Sylc) + Ry(d) =8
has a unique solution.

Proor. Let X'=AX, X(c)=E; it suffices to show that QX(a)
+SX(c)+RX(b) is nonsingular, the determinant in question being
xnn (@) xuu(b) —xnu(a)xun(d). By Lemma 3, xa(b) and synxun(b)
are positive; by Lemma 3’, xy~x(a) and syyxyu(a) are positive; hence
the determinant is positive.

It is a matter of detail to verify that the hypotheses of Theorem B
imply those of Theorem 2. As in the two-point case, coefficient matri-
ces with vanishing entries, and in particular the scalar case (e.g.,
Theorem 2 in [2]), are allowed.
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