TORSION FREE COVERING MODULES
EDGAR ENOCHS

Let A be an integral domain and K its field of fractions. An 4-
module E is said to be torsion free if ax=0 for aE€ A4, xEE implies
a=0 or x=0. We will say that a submodule E; of an 4-module E is
pure in E if aEy=aENE, for all a€A4. Then if E is torsion free, a
submodule E; of E is pure in E if and only if E/E, is torsion free.
Clearly the union of a chain of pure submodules of a module is still
a pure submodule and if E; CE,, are submodules of E such that E; is
pure in E; and E,/E, pure in E/E, then E, is pure in E.

It is well known that for any 4-module E there exists a torsion free
A-module E, and an epimorphism p: E—E; such that if ¢ is any linear
mapping from E into a torsion free module F then there is a unique
linear mapping f: E;—F such that fo p=4¢, i.e., the diagram

E—)El

4 f
F

is commutative. It suffices to let E; be E/E’ where E’ is the torsion
submodule of E, i.e., the set of elements of E which are not free and p
the canonical mapping E—~E/E’.

The object of this paper is to show that for any module E there
exists a torsion free A-module T(E) and a linear mapping ¢: T(E)—E
which is unique “up to isomorphism” subject to the two conditions

(1) the kernel of ¢ contains no nontrivial pure submodules of E,

(2) if ¢: F>E is a linear mapping where F is torsion free then
there is a linear mapping f: F—T(E) such that Y o f=4¢.

Such a mapping ¢ will be called a torsion free covering of E and
T'(E) will be called a torsion free covering module of E. A linear map-
ping ¢: E'—E will be said to have the torsion free factor property if
for any linear mapping ¢: F—E, where F is torsion free there exists
a linear mapping f: F—E' such that Yy o f=¢.

We first prove four lemmas.

LemMA 1. If ¥: E'—E has the torsion free factor property and E, is
a submodule of E then the linear mapping y—(E,)—E, which agrees
with ¢ on y~'(E,) has the torsion free factor property.
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Proor. Trivial.

LeMMA 2. If E is injective then ¥: E'—E has the torsion free factor
property if and only if for every linear map ¢: F—E, where F is torsion
free and injective there is a linear mapping f: F—E' such that o f=¢.

Proor. The condition is clearly necessary. If ¢;: F;—E is any linear
mapping where Fi is torsion free, then since F; is a submodule of a
torsion free injective (hence divisible) module F and since E is injec-
tive there exists a linear mapping ¢: F—E such that ¢| F1=¢:. Then
if f: F—E' is such that ¢ o f=¢ then ¢ o (f| E1) =¢:.

LEmMMA 3. For every module E there exists a torsion free module E' and
a linear mapping ¥: E'—E having the torsion free factor property.

Proor. Using Lemma 1 and the fact that every module is a sub-
module of an injective module we see that it suffices to assume that
E is injective. Then using Lemma 2, we see that in order to prove
that a linear mapping ¥: E'—E has the torsion free factor property
it suffices to show that if ¢: F—E, where F is torsion free and injec-
tive then there is a linear mapping f: F—E’ such that y o f=¢.

If we let E' be the direct sum of sufficiently many copies of K
then clearly there exists a linear mapping ¢: E'—E such that for any
linear mapping ¢': K—E there is a linear mapping f': K—E' such
that ¢ o f' =¢’. Then since any torsion free injective module F is the
direct sum of a family of submodules isomorphic to K, clearly for
any linear mapping ¢: F—E there is a linear mapping f: F—E' such

thatyof=¢.

LEMMA 4. If ¥: E'—>E has the torsion free factor property and N is
a submodule of E' contained in the kernel of \y then the induced mapping
E'/N—E has the torsion free factor property.

Proor. Trivial.

In particular we see that if ¥: E’—E has the torsion free factor
property where E’ is torsion free and N is a maximal element among
the pure submodules of E’ contained in the kernel of ¥ then the in-
duced mapping E’/N—E is a torsion free covering of E.

This remark coupled with Lemma 3 gives us:

THEOREM 1. Every module E has a torsion free covering.
Now we need to show the uniqueness of the torsion free covering.

THEOREM 2. If Y': E'—E and '': E"’"—E are two torsion free cover-
ings of E and f: E'—E" is a linear mapping such that "' o f=y' then
[ is an isomorphism.
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Proor. Since ¥’ is a torsion free covering of E there exists a linear
mapping f: E'—E" such that ¢'’ o f=y'. But then the kernel of fis a
pure submodule of E’ (since E’ is torsion free) which is contained in
the kernel of ’. But then since ¢’ is a torsion free covering, the kernel
of fis 0. Thus f is a monomorphism and so Card (E’) £Card (E").
Similarly Card (E’")<Card (E’) so Card (E')=Card (E"), i.e., all
torsion free coverings of E have the same cardinality. Thus let X be
a set containing the elements of E’ and E’” and such that Card (X)
>Card (E'). Let § be the set of pairs (Eo, ¥o), where E, is an A4-
module whose elements are elements of X and where ¥, is a linear
mapping E,—E which is a torsion free covering of E. Then (E', ¥')
and (E”, ¢') belong to 5.

Partially order § by setting (E,, ¥o) < (Ey, $1) if Eg is a submodule
of E, and 1[/1| Ey=vy,. Then § has maximal elements for if € is a chain
of § let E* be the union of the first coordinates of the pairs in € with
the unique structure of an 4-module such that E, is a submodule of
E* for each (Ey, ¥o) in € and let ¢*: E*—E be the unique linear map-
ping such that y*| E¢=1, for each pair (Eo, o) in €.

Then ¢* clearly has the torsion free factor property. If N is a pure
submodule E* contained in the kernel of y* then NNE, is a pure
submodule of E, contained in the kernel of ¥, for each (Eq, ¥o) in €.
Thus NNE,=0 for each (Es, ¥o) in € so N=0. Thus (E*, ¢*) belongs
to §. Clearly (E*, ¢*) is an upper bound of €.

Thus assume (E*, ¢*) is a maximal element of &.

Now let fi: E*—E’ be any linear mapping such that ¢’ o fi=¢*.
By our previous remarks we know f; is a monomorphism. We would
like to show that it is also an epimorphism. Let YCX be such that
Card (Y)=Card (E’'—fi(E*)) and such that E¥XN\Y=. Sucha Vis
available since Card (X)>Card (E’)=Card (E*). Let E,=E*UY
and let g be a bijection Eq—E’ such that g| E*=f, and g(V)=E’
—f1(E*). Then E, can be made uniquely into an A-module so that
g becomes an isomorphism. Letting E, denote this module we see
that E* is a submodule of E,, that (Eo, ¢’ 0 g) is an element of & and
¥ o g| E*=y' o fi=y* so that (E¥, y*)=(Eo, ' 0g). But (E¥, y*)
is a maximal element of ¥, hence Y= f so E' —fi(E*) =& or fiis an
epimorphism. Similarly any linear mapping f.: E¥*—E'’ such that
Y’ o fa=y* is an epimorphism. But fo f1 is such a mapping since
Y ofofi=¢' o fi=y* hence f o fiis an epimorphism but then f must
be an epimorphism. But f is a monomorphism hence an isomorphism.
This completes the proof.

Using the fact that the Pontrjagin dual of a compact Abelian group
is torsion free if and only if the group is connected [3] we get
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CoroLLARY. Every compact Abelian group G can be embedded
uniquely up to isomorphism in a connected compact Abelian group G’
in such a manner that every continuous homomorphism of G into a
connected compact Abelian group can be extended to G' and so that G’
has no closed connected proper subgroups containing G.

TuEOREM 3. Ify: T(E)—E is a torsion free covering of E with kernel
G then the sequence

0 — Exty (F, G) — Exty (F, T(E)) — Exty (F, E) — 0
s exact if F s torsion free and if n=1.

Proor. By definition of T(E), Hom(F, T(E))—Hom(F, E)—0 is
exact whenever F is torsion free. Choose

0—->K—>L—->F—>0

exact with L a free module. Then Ext}(K, ) is naturally isomorphic
to Exti{t!(F, ) for all = 1. Applying the above remarks to K, which
is torsion free and using induction we get that

0 — Exty (F, G) — Exty (F, T(E))

is exact for all 7=1. Hence

0 — Exts (F, G) — Exty (F, T(E)) — Exty (F, E) — 0

is exact for all 7=1.
For an example we show:

LEMMA S. If A is a principal ring and w a prime then if E is a torsion
free covering module of the A-module A/(w) then E is isomorphic to the
w-adic numbers.

PRrOOF. It is known that the 7-adic numbers are isomorphic to the
inverse limit of the inverse system of A-modules defined by the
canonical mappings 4/(m"*)—A4/(@"), n=1, 2, - - - . Let E denote
this limit and let ¥: E—A4/(r) be the projection mapping. It is easy
to see that no nontrivial pure submodules of E are contained in the
kernel of ¢. Let ¢: F—A/(x) be any linear mapping where F is tor-
sion free. If p =0 then let f: F—E be the null mapping. Then ¢ o f=¢.
If 0 we choose a base (x,+mF).er of the vector space F/wF over
A/(x) such that for one 1,& 1, ¢(x.,) =1 and such that ¢(x.) =0 for
t#t. Then the family (x,+7"F).er forms a base of the 4/(w")-
module F/x"F for first suppose Y .era.x. € 7*F. Then since
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(x.+7F) cr is a base of the 4/(r)-module F/7F we see that 7 divides
each o, and so 7 divides D_.er a.x.. Since F is torsion free the symbol
Z.ez a.x./w is well defined and we have Z‘GI ax./m= ZIGI a./TX.
€7 1F. Repeating the argument above we see that n* divides a,
which says the family (x.+#"F).er is free over A/(x"). To prove
(x.+7"F).er generates F/x"F remark that since F is torsion free the
map x—w'x of F onto w*F is an isomorphism which maps 7w F onto
7+ F. Thus F/wF and 7*F/n*1F are isomorphic 4-modules. Thus
(wix,+m*1F),er is a set of generators of 7'F/x*+!F for each 1= 1. But
this clearly implies that for any x € F and =1 we have x — D_.er a.Xs
ExiF for some linear combination Y_.er a.x. of the x.. It is easy to
see that no nontrivial pure submodules of E are contained in the
kernel of y. Let ¢: F—A/(w) be any linear mapping where F is tor-
sion free. If =0 then let f: F—E be the null mapping. Theny o f=4¢.
If $#0 we choose a base (x.-+F).cr of the vector space F/wF over
A/(x) such that for one &1, ¢(x.,) =1 and such that ¢(x.) =0 for
v#1o. [Clearly the family (x.+7"F).er forms a base of the 4/(w")-
module F/x"F]. Hence there exists a linear mapping f,.: F/7"F
—A /(@) such that f,(x.,+7"F)=14+(x") and f.(x.+#"F)=0 if
t#1. Passing to the limit we get a mapping f: F—E such that
yof=¢.

In more generality the torsion free covering modules of simple 4-
modules have the following interesting property.

THEOREM 4. If S is a simple A-module, QC A 1is the annihilator of
S and : T(S)—S is a torsion free covering of S then T(S) is a direct
summand of any module F containing T(S) such that QT(S)
=QFNT(S).

ProoF. Let j be the mapping T(S)/@T(S)—F/@F induced by the
canonical injection T(S)—F. By hypothesis, j will be an injection.
Then since F/QF is semi-simple there will be a mapping ¢,: F/@F—S
such that ¢, 0 j=y. Thus letting p and p’ denote the canonical map-
pings from T'(S) into T'(S)/@T(S) and from F into F/QF we get that
Y=y10p=e¢10p’ o1 where 7 is the canonical injection T(S)—F. But
there exists a linear mapping f: F—T(S) such that Yy o f=¢109p’.
Thusy ofoi=¢;0p’ 0i=y hence f 07 is an automorphism of T'(S)
by Theorem 2 so that 2(7'(S)) = T(S) is a direct summand of F.

We remark that in case 4 is a principal ideal domain and
S=A/(w) then the hypothesis @T(S)=T(S)NQF is equivalent to
T(S) being a pure submodule of F. Then the result of this lemmaisa
special case of Proposition 2.1, p. 371 of [2].
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I am grateful to Dr. Johann Sonner whose stimulating ideas inter-
ested me in this problem.
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