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1. Introduction. In [6] Householder, using Weissinger's identity,

obtained the necessary and sufficient conditions for the convergence

of the Gauss-Seidel method for the solution of finite matrix equations

of the form (D — S — S* — F)u=f. The same conditions were also ob-

tained by Krein and Prozorovskaya [9] for an analog of the Gauss-

Seidel method for the operator equations of the form (D-\-S+S*)u=f

in a Hubert space.

The purpose of this article is to extend the result of the above

authors to the generalized overrelaxation method (go-method) for

the solution of a wider class of operator equations (D-\-S-\-Q)u=f in

a Hubert space investigated by the author [lO].

Let us note that in case H is finite-dimensional the overrelaxation

method, in view of its practical success in the solution of finite alge-

braic systems arising in the numerical solution of partial differential

equations, was previously extensively studied by a number of authors,

in particular, by Frankel [4], Young [13], Arms, Gates and Zondek

[2], Friedman [5], Varga [12], Keller [8], Kahan [7], Schechter

[ll], Albrecht [l] and others.3 Since the class of operator equations

considered in this article includes, in particular, the Fredholm integral

equations of the second kind with symmetric (D = I, Q=S*) and

symmetrizable kernels and the finite matrix equations considered by

most of the above authors our result will also at the same time unify

and extend to our class of operators in Hubert space the correspond-

ing result of these authors.4

2. The identities. Let H he a real or complex Hubert space and A

a linear bounded operator in H of the form

(1) A = D + S + Q.

Let S* be the adjoint of 5 and ß a set of real positive numbers w>0
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such that ß and the operators D, S, and Q have the property that

there exists some linear symmetric and positive definite operator K

which commutes with S and has the property that

(a) (Du, Kv) = (Ku, Dv) for all u and v in H, i.e., D is X-symmetric,

(b) G = G((a) = ((2-u)/w)D + S*-Q is X-symmetric and ¿C-posi-

tive definite (K-p.d.), i.e., there exists a real number ß = ß(co)>0 such

that for all u Q H and wQÜ

(2) (Gu, Ku) ^ ß\\u\\2,

(c) (D+uS) has a bounded inverse defined on all of H for uQQ.

Let us first observe that since K is symmetric (a) implies that

(3) D*K = KD

while this together with (b) and the commutativity of K and S im-

plies that

(4) Q*K = KS - KS* + KQ.

Furthermore, (3) and (4) together imply that A is X-symmetric, i.e.,

A*K = KA.
In seeking an approximate solution un of the equation

(5) Au=f, fQH,

we shall apply the go-method with a constant relaxation factor w in

Q defined by the scheme

(6) (D + ooS)u„ - - {(w - 1)D + uQ}un-i + «/,

or equivalently by

(7) un = — 7\a>)w„_i + g,

where wo is an arbitrary initial approximation, g = co(D+uS)~1f, and

(8) T(u) = (D + wS)-^ (w- 1)D + coQ}

is the generalized overrelaxation operator.

Lemma 1. Let D, S, Q, K, and fi satisfy the conditions (a), (b), and

(c). Then for every u and v in H the following identities are valid

n-l

(9) (Ku, Av) = £ (KT*[I + T]u, GT*[l + T]v) + Rn{u, v},

I ([D + ccS]u, Ku) |2 - I ([(a - l)D + uQ]u, Ku) I2
(10)

= w2(Gu, Ku)(Au, Ku),

where
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(11) Rn{u, v} = or\Tnu, R[D + aS]T»(I + T)v),   n = 1, 2, 3, • • • .

Proof. The proof of (9) and (10) requires some manipulation.

In establishing (9) we use the mathematical induction according

to which we first verify its validity for n = 1. If u and v are arbitrary

elements in H, then by (8)

(12) [(w- l)D + a>Q]u= (D + wS)Tu

or

(12') ([(co - 1)I> + c*Q]u, Rv) = ([D + uS]Tu, Rv)

whence, using (3), we obtain

(u, [(co - i)RD + wQ*R]v) = (Tu, [RD + wS*R]v).

Adding and subtracting (Tu, 2C[(co — \)D-\-o}Q\v) on the right and

using the commutativity of R with S we get the identity

(u, [(co - 1)20? + uQ*R]v) = (Tu, coRGv) + (Tu, R[(a> -1)D + uQ]v)

which, in view of (4) and (12), can be written as

(13) (Ru, [D + wS]v) = ([I + T]u, uRGv) + (Tu, R[D + coSJTv).

Since, by (12), coAu = D + wS + (w - 1)2? + aQ=(D + wS)u

-\-(D-\-coS)Tu we obtain from it and (13)

(Ru, o>Av) = (Ru, (D + uS)v) + (Ru, (D + uS)Tv)

= ((I + T)u, wRGv) + (Tu, R(D + <¿S)Tv)

+ ((I + T)u, aRGTv) + (Tu, R(D + US)T- Tv)

= co((7 + T)u, RG(I + T)v) + (Tu, R(D + co5)I(l + 2».

On dividing by co we get (9) for n= 1.

Let us assume now that (9) is valid for n = k, i.e.,

(9)       (Ru, Av) = ¿ (2^(7 + T)u, GT'(I + T)v) + Rk{u, v},

and prove its validity also for n = k-\-\. This, however, follows from

(9), (13), and (11) for if in (13) we replace u by Tnu and v by

rn(I-frK then from (11) we get

Rk{u, v} = co-J((I + T)Tnu, œRGT"(I + T)v)

+ or^T^u, R(D + co5)rn+1(I + 7»

= ((I + T)T"u, RGT»(I + T)v) + Rk+i{u, v}.
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Combining this with (9) we obtain the validity of (9) for n = k + l

and thus the proof of (9) for all n.

To prove (10) note that since the complex conjugate of

[((D+aS)u, Ku)} is ((D+wS*)u, Ku) and

w2(Gu, Ku)(Au, Ku) = w(Gu, Ku)((D + coS)u, Ku)

+ œ(Gu, Ku)(((w - 1)D + uQ)u, Ku)

for every u in H, then adding ( [D +uS* — wG]u, Ku) ■ ((D+uS)u, Ku)

and subtracting its equivalent ([(« — 1)D + coQ]u, Ku)

•((D+uS)u, Ku) on the right we get

w2(Gu, Ku)(Au, Ku)

= ((D + uS*)u, Ku) ■ ((D + wS)u, Ku)

- ([(co - 1)D + uiQ]u, Ku) ■ ([D + uS- oiG]u, Ku)

= | ((D + o>S)u,Ku)\2

- ([(co - 1)D + coQ]u, Ku)((u -l)D + wS + a(Q- S*)u, Ku).

Since the complex conjugate of [([(« — 1)D + o>Q]u, Ku)] is

(Ku, [(o>-l)D+wQ]u) = ([(w-l)KD+uQ*K]u, u) the relation (4)

implies that the last relation is exactly the identity (10). This com-

pletes the proof of Lemma 1.

Remark. If we choose K — I, Q = S*, and o> = l, then the identity

(9) reduces to the identity used in [ö]. If in this case we, in addition,

assume that A is symmetric and positive definite, then from the

identity (10) valid for all « in if we obtain the inequality used in [9].

In Lemma 2 below we will establish the relationship between the

identity (10) and the important equality (21) in [lO] and, in this

particular case, also the relationship between (9) and (10).

Lemma 2. i/, in addition to conditions (a), (b) and (c), the spectrum

a(T) of the operator T(w) contains only eigenvalues p of finite multi-

plicity with zero as its sole limit point, then the identity (9) reduces to

the equality

(Ku, Au)= \l + ß \2(Ku, Gu) £ | ß \2<
(" ) i=o

+ co"1 ¡ ß \2n(l + ß)(Ku, [D + uS]u)

and (10) to the equality (21) in [lO] which, for A of the form (1), can
be written as

i- M2
(10') (Gu, Ku) = -.-—\ (Au, Ku),

\l + ß\2
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where p is an arbitrary eigenvalue of T and u¿¿0 an eigenvector cor-

responding to p. Furthermore, if A is also R-p.d. then for n-+ °° the

equality (9') is identical with (10').

Proof. The proof of (9') follows directly from (9) with v = u and

the observation that the equality Tu=pu implies that Tl(I-\-T)u

=pi(\+p)u for t=0, 1, 2, • • • , and (RV(I+T)u, GT'(I+T)u)

= \l+p\2\p\2i(Ru,Gu).

To prove (10') note that, in view of (8) and (12), Tu=pu implies

that

[(co - 1)2) + uQ]u = (D + uS)Tu = p(D + uS)u.

Substituting this into the identity (10) we get

(14) co2(G«, Ru)(Au, Ku) = [1 - \p |2] \((D + o>S)u, Ru) \2.

Noting that T= (D+ccS)-^ (u-l)D+uQ} =ío(D+oj5)-1^ -I and

hence that —1 is not an eigenvalue of T we obtain the equality

(D-{-coS)u= [ca/(l-\-p)]Au valid for all eigenvectors u and correspond-

ing eigenvalues p of T. Now substituting [co/(l+)tt)]^lM for (D-\-o)S)u

in (14) we obtain the desired equality (10').

The validity of the last assertion in Lemma 2 follows from (10')

and (9') for, since G and A are positive definite, the relation (10')

implies that \p\ <1 and, therefore, passing to the limit in (9') as

«—»co we obtain

00 I 1 + ul2
(Ru, Au) = \í+p \2(Ru, Gu) Z I ß \2i = -—¡—r (Ku>Gu)

<=o 1 - I p \2

which is the equality (10').

3. The main theorem. Let us note that from (7) we find by induc-

tion that
n-l

(15) «„ = zZ T*g + T»tio

from which we see that the sequence of approximations un converges

if the series y^"n T' converges. The latter converges if the spectrum

cr(I) of T lies in the interior of the unit circle. We shall now prove the

main

Theorem. If D, S, Q, R, and ß satisfy the conditions (a), (b), and

(c), then the necessary and sufficient condition that the spectrum <r(T)

lie in the interior of the unit circle is that the operator A be R-p.d.

Proof. The proof of the theorem is essentially based on the identi-

ties established in Lemma 1.
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Necessity. To prove it note that if cr(r) lies in the interior of the

unit circle, then it is not hard to see that | Rn {u, v} [ —>0 as «—> °° and

the identity (9) implies that

te

(16) (Ku, Av) = £ (KT\I + T)u, GT<(I + T)v)
t=0

for all u and v in H. Thus, if in (16) we put u — v, then, in view of

condition (b), (Au, Ku) is a convergent series of positive numbers.

In particular, we have

(Ku, Au) ^ (K(l + T)u, G(l + T)u).

Since X= —1 does not belong to o-(T), the last inequality shows that

A is K-p.d. and thus proves the necessity.

Sufficiency. To prove the sufficiency we must show that the as-

sumption that A is K-p.d., i.e., there exists an a>0 such that for

all u in H

(17) (Au, Ku) â a\\u\\2,

implies that (T—X) is a continuously invertible operator for all

|X| £1, i.e., -R(r-X)=iiand there exists a 0>O such that ||(r-X)w||

^0\\u\\ for all uQH, where R(T-X) is the range of (T-\).
If (T—X) were not continuously invertible there would exist a

sequence {un}, 11 un\ \ — 1, such that vn = ( T—X) un—>0 as n—* <x>. Apply-

ing to vn the operator (D+coS) we get (D+coS)vn—+0, i.e.,

(18) {(co - l)D + o>Q\un - \(D + ccS)un-^0

as «—» oo or

(18')    ({(« - 1)D + coÇ}m„, Kun) - \({D + co5}w„, Kun) -^ 0.

Since we are dealing with bounded operators the last limiting relation

implies that

(19) [ X H (D + a,S)un, Kun) \2 - \ ([(co - 1)D + a>Q]un, Kun) \2-^0

as n—>oo. However, if A is K-p.d. and |X[ 5:1, the limiting relation

(19) contradicts the inequality derived from the identity (10) for,

in view of (2) and (17), the identity (10) yields the inequality

(20) | ((D + uS)un, Kun) \2 - ¡ ([(co - 1)7J + aQ]un, Kun) \2 è a*ßa.

Thus, (T—X)-1 is a bounded operator defined on the closed sub-

space R(T—X) QH. Moreover R(T—\) =H for otherwise there would

exist an element v in H such that ((T—X)u, »)=0or (Tu, v) —\(u, v)
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for all u in H. This can be written in the form ([(w — l)D+o)Q]u,

(D* +co.S*)-y) = \(u, v). Since R(R) =H there exists an element w in

H such that Rw= (D*-\-uS*)~1v. If we choose now u~w, then the

last equality becomes

([(u - \)D + coQ]w, Rw) = \((D + o>S)w, Rw).

For |X] ^1 this equality contradicts the corresponding inequality

(20) arising from the identity (10). This shows that R(T—X) —H and

thus completes the proof of the theorem.

4. Special cases, (i) If we take co = l, then the theorem gives the

necessary and sufficient conditions for the convergence of the gener-

alized Gauss-Seidel method, which for the case when R = I and Q = S*

were given in [9].

(ii) If we change the signs of 5 and Q and let w=l, K = I, and
Q = S*-r-F, where F is symmetric, the theorem reduces to the result

proved in [ó] for the case when the operators are finite matrices.

(iii) If D = I and Q = S*, then the theorem and the go-method are

applicable to the operator equations of the form (I — S — S*)u=-f to

which are reducible, for example, the Fredholm integral equations of

the second kind with symmetric or symmetrizable kernels and matrix

equations in which D is usually the matrix composed of diagonal

terms, 5 is a lower triangular, and S* an upper triangular matrix. Let

us note at the end that for the last two important classes of operator

equations the set ß= {to, 0<co<2}.

(iv) Theorem 1 in [lO] is a special and a more restrictive case of

the present theorem.
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New York University

NOTE ON A NONLINEAR VOLTERRA EQUATION

J. J. LEVIN1 AND J. A. NOHEL2

1. Introduction. We investigate the solutions of

(1.1) x'(t) = - f\(t - T)g(x(r))dr (' = ^j

as i—»oo, where a(t) is completely monotonie on 0g/< co and where

g(x) is a (nonlinear) spring. Under this hypothesis, (1.1) was shown

in [2 ] to be relevant to certain physical applications and results were

obtained there for the linear case g(x)=x. (If a(i)— a(0), then (1.1)

reduces to the nonlinear oscillator x"+a(0)g(x) =0.) Equation (1.1)

was studied in [l] under less hypothesis on a(t). However, while the

result is weaker than that of [l ], the present approach draws together

such different notions of positivity as Liapounov functions, com-

pletely monotonie functions, and kernels of positive type. It also

provides a new Liapounov function for (1.1). Specifically, we prove

the

Theorem. Let a(t) and g(x) satisfy

(1.2) a(t) 6C[0,«),(-l)¥«(l) 2 0 (0< *<«;*-0,1,2, • ••)•

(1.3) g(x) Q C(- co, co), xg(x) > 0 (x ^ 0), G(x) =  f^d?-^ «
J 0

_ (ltfl->co)-

Presented to the Society, January 24, 1963; received by the editors September 6,

1962.
1 MIT Lincoln Laboratory. Operated with support from the U. S. Army, Navy,

and Air Force.

* Partially supported by the National Science Foundation (G-19925).


