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For each e, let fe be the partial recursive function

UitiyTxie, n, y)),

and let We be the range of/e. Then Wo, Wlt W2, • • • is the Kleene

enumeration of the recursively enumerable sets. Post [5] calls a

recursively enumerable set simple if its complement is infinite but

does not contain any infinite, recursively enumerable set. Raymond

Smullyan calls a recursively enumerable set W effectively simple if

its complement is infinite, and if there is a partial recursive function

/ such that for each e, if We is contained in the complement of IF,

then/(e) is defined and is greater than the cardinality of We.2 Clearly,

an effectively simple set is simple. The simple set S constructed by

Post in [5] is effectively simple. This latter is no accident. In fact it

is not unreasonable to claim that any direct attack on the problem of

constructing a simple set must result in an effectively simple set. Our

purpose here is to obtain a simple set which is not effectively simple.

We will make strong use of the recursion theorem of Kleene [2];

however, we will use it in the informal manner of Myhill [4]. Our

notation is that of [2].

We introduce a recursive function E:

E(0) = uxTx((x)o,(x)x,(x)2);

E(s +l) = ßx[x > E(s) & Tx((x)o, (x)x, (*),)].

We will need E to simultaneously enumerate all the recursively

enumerable sets in a fashion suitable for the proving of our theorem.

It is a peculiarity of our proof that we cannot rely merely on the

usual properties associated with any standard enumeration of the

recursively enumerable sets; instead, we are forced to specify a par-

ticular enumeration. For each e and s we define a finite set W\: for

each m, mEW\ if and only if for some i^s,

m = U((E(i))2) & e = (E(i))o.

Then for each e, W°QW¡QW^Q ■ ■ ■ , and W. = \){ W'e\s^0}. We
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say 5 defines fe(n) if c= (E(s))o and ra= (_E(s))i. If 5 defines fein), then

/,(w) = U((E(s))2). For each e and », let

Sie,n)~us    is defines fein)).

S is partial recursive, and Sie, n) is defined if and only if fein) is

defined.
Let 0 denote the empty set. It is clear there exists a recursive func-

tion g such that for each e, i and z, we have

y {2«-3«| £(5(e,z)) < < = £(S(e,*)) +/.(«)}       if/.(«) isdefined,

( 0       otherwise.

The recursion theorem tells us that there exists a recursive function

z such that for each e and i, we have

W,i,,i) = Wí(«,<,«(«,o)

' {2<-3< I JE(5(e, «(«, 0)) < < = £(5(e, sfc *))) +/.(«{«, *))}

= ■ if/„(z(e, ¿)) is defined,

. 0       otherwise.

We note some properties of z :

(1) if fe(z(e, i)) is defined, then/e(z(e, i)) is equal to the cardinality

of W,(_e,iy,

(2) if *Vj, then JF.(.lOrW,,(..,) = 0;

(3) if fe(z(e, i)) is defined, then for all n, W?(MM)rW,<.,«=0;

(4) if Í9*j and both fe(z(e, i)) and fe(z(e, j)) are defined, then

z(e, i)^z(e, j).

To prove (3), let s = S(e, z(e, i)) and let mEWnr\WtU,i). Then

w=JE(s), since m = U((E(i))2) for some i ^s, and since £ is an increas-

ing function. (Recall that U(x)^x for all x.) But m>E(s), since

w = 2i-3t for some t>E(s).

Theorem 1. There exists a simple set which is not effectively simple.

Proof. We will define a sequence A, B, Qo, Qi, Q2, • • • of simul-

taneously recursively enumerable sets. A will be simple, but not effec-

tively simple. B will be such that if eEB, then Wcr\A9¿0. We will

see to it that if We is infinite, then eEB. Each Qe will be finite and

will contain a set that will serve as a witness to the fact that/« does

not effectively bound the cardinalities of the finite subsets of the

complement of A.

Stage 5 = 0. We set A° = B0 = Çpi=0 for all i.
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Stage s>0. Let e = (E(s))o and n = (E(s))i. Thus s defines/«(»). We

perform the following two operations in the indicated order:

(a) We set Qj = Q$]~1 for all jVe. If there is no i such that iúe and

n = z(e, î), we set Ofe = Gf,~1. If there is such an i, then by (4) it is

unique. In addition, Sie, z(e, i)) is defined and

W,,.,» = {2<-3«| E(S(e,z(e,i))) < l á £(5(«,s(e,Í))) +/.(*(«,*))}.

WeaetQÎ-QÎ--UW*,(..o.
(b) If eGJ?*-1 or if there is no m such that

mEW'.b (J)is, im E Q'i),

then we set B'^B'*1 and A' = A'~X. If e£5s_1 and there is an m with

the above property, let i be the least one. We set B" = B'~l\J{e} and
A' = A'-l\J{i}.

Let ¿=U{.4'|sèO} and B = i){B'\s^0}. Since £ and z are re-

cursive, it follows A is recursively enumerable. For each e, let

Q« = U{$|s^0}. Çe is finite; in fact,

e. = U{H".(..o| iá«}>

since Gr^C^öT^TF^.o if and only if i^e and s = S(e, z(e, *))•

Lemma 1. 7/W, M infinite, then Ar\We¿¿0.

Proof. We know Q, is finite for every j. Let m be a member of W

which is greater than every member of Q, for all j ^ e. Let 5 be such

that mEW\. First we suppose eEB'~l. Then there must be aKi

such that eEB'"1 and eEBK At stage t we must have performed

operation (b) in such a manner that B' = B'~1\J{e} and A' = A'~1

\j{i}, where iEWse. Now we suppose e£5*_1. We have

tnEW'.&(j)J£e(mEQ'i)-

But then operation (b) at stage 5 forces us to put a member of Wse

in A:

Lemma 2. IfmEW^-Q], then mEQi-

Proof. Suppose for the sake of a reductio ad absurdum that

mEWl-Ql and mEQj- Since <2,= U {W,Uli)\ iúj}, there must be
an i^j such that mEW,u,i-¡. Since W#u,o is nonempty, f¡(z(j, i)) is

defined. Let t = S(j, z(j, i)). Then í defines fj(z(j, i)), and conse-

quently,
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since i g j. Since m(¡:Qj, we must have s <t. Since m£ We, we have

mE wlriWidM ^°-

But this last contradicts (3).

Lemma 3. If mEQil^A, then there exists an s and an e such that

(E(s))o = e<iand {e} =B'-B!~l and {m} =A°-A'-\

Proof. Since m£i, there is an s such that {m} =A' — As~l. Let

e=(E(s))o. Since A'^A*~l, we must have {e} =B3-Ba-\ In addi-

tion,

m E W\ & (j)Jst (m $ Q'i).

It follows from Lemma 2 that (j)¡ie (mEQj)- But then e<i, since

mEQi.

Lemma 4. The set Qii~\A has at most i members.

Proof. Suppose m and n are distinct members of QiC\A. Lemma 3

guarantees the existence of s(m), e(m), s(n) and e(n) with properties

as stated in the conclusion of Lemma 3. Thus

{m} = At(-m) - As(-m)-x & {n} = AsM - ¿«<»>-i.

Since m¿¿n, it follows s(m)9£s(n). But then e(m)^e(n), since

{e(m)} = Bs(m) - B3^-1 & [e(n)} = £»<"> - B'™'1.

We also know from Lemma 3 that e(m) <i and e(n) <i. Thus we can

map the set Qif^A in a one-to-one fashion into the set {e\ e<i}.

Lemma 5. For each e, there is a z such that Wz is contained in the

complement of A and such that either fe(z) is undefined or fe(z) is not

greater than the cardinality of W,.

Proof. Fix e. We show that some member of the sequence, z(e, 0),

z(e, 1), - • ■ , z(e, e) serves as the desired z. Suppose there is an i = e

such that/«(z(e, i)) is undefined. Then Wz(e,i) = 0, and the lemma is

proved. Suppose then that fe(z(e, i)) is defined for all î = e. By (1),

fe(z(e, i)) is not greater than the cardinality of W,(,,,-) for any ¿ = e.

Thus it suffices to find ant|e such that Wz{e,i)(~\A = 0. The sets,

Wz(e,0), Wz(e.l),  ■   -   '  ,  Wz(e,e),

are nonempty and disjoint. If each of them has a member in A, then

their union has at least e + 1 members in A. But their union is Qe,

and Lemma 4 tells us that Q, has at most e members in A.

It follows from Lemma 5 that A is not effectively simple. It also
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follows from Lemma 5 that the complement of A is infinite, since

otherwise, the constant function

f(n) = 1 + cardinality of the complement of A

would constitute a counterexample to Lemma 5. Finally, by Lemma

1, A is simple.

Post [5] calls a recursively enumerable set W hyper-simple if its

complement is infinite, and if there does not exist a recursively

enumerable sequence of disjoint, finite sets, each one of which con-

tains a member of the complement of W. It can be shown with the

help of Lemma 4 that A is not hyper-simple.

The proof of Theorem 1 above is, as far as we know, the first proof

in recursion theory to make simultaneous use of the recursion theo-

rem and the priority method of Friedberg [l] and Muchnik [3]. The

priority method was needed to resolve the inevitable conflict between

putting elements in A as required by Lemma 1 and keeping them

out of A as required by Lemma 4. Thus in operation (b), we are not

allowed to take m from Wse and add it to A" if for some j^e, mEQj-

The recursion theorem was needed to prove that our system of pri-

orities does eventually resolve all conflicts happily; in particular, the

recursion theorem made possible the proof of Lemma 2.
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