A SIMPLE SET WHICH IS NOT EFFECTIVELY SIMPLE

GERALD E. SACKS1

For each e, let f_e be the partial recursive function

$$U(\mu y T_1(e, n, y)),$$

and let W_e be the range of f_e . Then W_0 , W_1 , W_2 , \cdots is the Kleene enumeration of the recursively enumerable sets. Post [5] calls a recursively enumerable set simple if its complement is infinite but does not contain any infinite, recursively enumerable set. Raymond Smullyan calls a recursively enumerable set W effectively simple if its complement is infinite, and if there is a partial recursive function f such that for each e, if W_e is contained in the complement of W_e then f(e) is defined and is greater than the cardinality of W_{e} . Clearly, an effectively simple set is simple. The simple set S constructed by Post in [5] is effectively simple. This latter is no accident. In fact it is not unreasonable to claim that any direct attack on the problem of constructing a simple set must result in an effectively simple set. Our purpose here is to obtain a simple set which is not effectively simple. We will make strong use of the recursion theorem of Kleene [2]; however, we will use it in the informal manner of Myhill [4]. Our notation is that of [2].

We introduce a recursive function E:

$$E(0) = \mu x T_1((x)_0, (x)_1, (x)_2);$$

$$E(s+1) = \mu x [x > E(s) \& T_1((x)_0, (x)_1, (x)_2)].$$

We will need E to simultaneously enumerate all the recursively enumerable sets in a fashion suitable for the proving of our theorem. It is a peculiarity of our proof that we cannot rely merely on the usual properties associated with any standard enumeration of the recursively enumerable sets; instead, we are forced to specify a particular enumeration. For each e and s we define a finite set W_e^s : for each e, $m \in W_e^s$ if and only if for some $i \leq s$,

$$m = U((E(i))_2) \& e = (E(i))_0.$$

Then for each e, $W_e^0 \subseteq W_e^1 \subseteq W_e^2 \subseteq \cdots$, and $W_e = \bigcup \{W_e^3 \mid s \ge 0\}$. We

Presented to the Society January 24, 1963; received by the editors October 25, 1962.

¹ The preparation of this paper was partially supported by N.S.F. Grant GP-124,

 $^{^{2}}$ Smullyan actually requires that f be recursive, but it is easy to show the two definitions equivalent.

say s defines $f_e(n)$ if $e = (E(s))_0$ and $n = (E(s))_1$. If s defines $f_e(n)$, then $f_e(n) = U((E(s))_2)$. For each e and n, let

$$S(e, n) \simeq \mu s$$
 (s defines $f_e(n)$).

S is partial recursive, and S(e, n) is defined if and only if $f_e(n)$ is defined.

Let 0 denote the empty set. It is clear there exists a recursive function g such that for each e, i and z, we have

 $W_{g(e,i,z)}$

$$=\begin{cases} \left\{ 2^{i \cdot 3^{t}} \middle| E(S(e,z)) < t \leq E(S(e,z)) + f_{e}(z) \right\} & \text{if } f_{e}(z) \text{ is defined,} \\ 0 & \text{otherwise.} \end{cases}$$

The recursion theorem tells us that there exists a recursive function z such that for each e and i, we have

$$\begin{aligned} W_{z(e,i)} &= W_{\varrho(e,i,z(e,i))} \\ &= \begin{cases} \left\{ 2^{i} \cdot 3^{i} \middle| E(S(e,z(e,i))) < t \leq E(S(e,z(e,i))) + f_{e}(z(e,i)) \right\} \\ &\text{if } f_{e}(z(e,i)) \text{ is defined,} \end{cases} \\ 0 & \text{otherwise.} \end{aligned}$$

We note some properties of z:

- (1) if $f_e(z(e, i))$ is defined, then $f_e(z(e, i))$ is equal to the cardinality of $W_{z(e,i)}$;
 - (2) if $i \neq j$, then $W_{z(e,i)} \cap W_{z(e,j)} = 0$;
 - (3) if $f_e(z(e, i))$ is defined, then for all n, $W_n^{S(e,z(e,i))} \cap W_{z(e,i)} = 0$;
- (4) if $i \neq j$ and both $f_e(z(e, i))$ and $f_e(z(e, j))$ are defined, then $z(e, i) \neq z(e, j)$.

To prove (3), let s = S(e, z(e, i)) and let $m \in W_n^s \cap W_{z(e,i)}$. Then $m \le E(s)$, since $m = U((E(i))_2)$ for some $i \le s$, and since E is an increasing function. (Recall that $U(x) \le x$ for all x.) But m > E(s), since $m = 2^i \cdot 3^t$ for some t > E(s).

THEOREM 1. There exists a simple set which is not effectively simple.

PROOF. We will define a sequence A, B, Q_0 , Q_1 , Q_2 , \cdots of simultaneously recursively enumerable sets. A will be simple, but not effectively simple. B will be such that if $e \in B$, then $W_e \cap A \neq 0$. We will see to it that if W_e is infinite, then $e \in B$. Each Q_e will be finite and will contain a set that will serve as a witness to the fact that f_e does not effectively bound the cardinalities of the finite subsets of the complement of A.

Stage s=0. We set $A^0=B^0=Q_i^0=0$ for all i.

Stage s > 0. Let $e = (E(s))_0$ and $n = (E(s))_1$. Thus s defines $f_e(n)$. We perform the following two operations in the indicated order:

(a) We set $Q_j^s = Q_j^{s-1}$ for all $j \neq e$. If there is no i such that $i \leq e$ and n = z(e, i), we set $Q_e^s = Q_e^{s-1}$. If there is such an i, then by (4) it is unique. In addition, S(e, z(e, i)) is defined and

$$W_{z(e,i)} = \left\{ 2^i \cdot 3^t \middle| E(S(e,z(e,i))) < t \le E(S(e,z(e,i))) + f_{\bullet}(z(e,i)) \right\}.$$

We set $Q_s^s = Q_s^{s-1} \cup W_{s(s,i)}$.

(b) If $e \in B^{s-1}$ or if there is no m such that

$$m \in W^{\bullet}_{\bullet} \& (j)_{j \leq \bullet} (m \notin Q^{\bullet}_{j}),$$

then we set $B^{\mathfrak{s}} = B^{\mathfrak{s}-1}$ and $A^{\mathfrak{s}} = A^{\mathfrak{s}-1}$. If $e \notin B^{\mathfrak{s}-1}$ and there is an m with the above property, let i be the least one. We set $B^{\mathfrak{s}} = B^{\mathfrak{s}-1} \cup \{e\}$ and $A^{\mathfrak{s}} = A^{\mathfrak{s}-1} \cup \{i\}$.

Let $A = \bigcup \{A^s \mid s \ge 0\}$ and $B = \bigcup \{B^s \mid s \ge 0\}$. Since E and z are recursive, it follows A is recursively enumerable. For each e, let $Q_e = \bigcup \{Q_e^s \mid s \ge 0\}$. Q_e is finite; in fact,

$$Q_e = \bigcup \{W_{z(e,i)} | i \leq e\},\$$

since $Q_e^{s-1} \neq Q_e^s = Q_e^{s-1} \cup W_{z(e,i)}$ if and only if $i \leq e$ and s = S(e, z(e, i)).

LEMMA 1. If W_e is infinite, then $A \cap W_e \neq 0$.

PROOF. We know Q_j is finite for every j. Let m be a member of W^e which is greater than every member of Q_j for all $j \leq e$. Let s be such that $m \in W^s_e$. First we suppose $e \in B^{s-1}$. Then there must be a t < s such that $e \notin B^{t-1}$ and $e \in B^t$. At stage t we must have performed operation (b) in such a manner that $B^t = B^{t-1} \cup \{e\}$ and $A^t = A^{t-1} \cup \{i\}$, where $i \in W^s_e$. Now we suppose $e \notin B^{s-1}$. We have

$$m \in W_{\bullet}^{\bullet} \& (j)_{j \leq \bullet} (m \notin Q_{j}^{\bullet}).$$

But then operation (b) at stage s forces us to put a member of W^s_{ϵ} in A^{\bullet} .

LEMMA 2. If $m \in W_{\epsilon}^{s} - Q_{j}^{s}$, then $m \notin Q_{j}$.

PROOF. Suppose for the sake of a reductio ad absurdum that $m \in W_e^s - Q_e^s$ and $m \in Q_j$. Since $Q_j = \bigcup \{ W_{z(j,i)} | i \leq j \}$, there must be an $i \leq j$ such that $m \in W_{z(j,i)}$. Since $W_{z(j,i)}$ is nonempty, $f_j(z(j,i))$ is defined. Let t = S(j, z(j,i)). Then t defines $f_j(z(j,i))$, and consequently,

$$Q_j^t = Q_j^{t-1} \cup W_{s(j,i)},$$

since $i \leq j$. Since $m \in Q_j^s$, we must have s < t. Since $m \in W_e^s$, we have

$$m \in W_{\epsilon}^t \cap W_{z(i,i)} \neq 0.$$

But this last contradicts (3).

LEMMA 3. If $m \in Q_i \cap A$, then there exists an s and an e such that $(E(s))_0 = e < i$ and $\{e\} = B^s - B^{s-1}$ and $\{m\} = A^s - A^{s-1}$.

PROOF. Since $m \in A$, there is an s such that $\{m\} = A^s - A^{s-1}$. Let $e = (E(s))_0$. Since $A^s \neq A^{s-1}$, we must have $\{e\} = B^s - B^{s-1}$. In addition,

$$m \in W_e^{\bullet} \& (j)_{j \leq e} \ (m \in Q_j^{\bullet}).$$

It follows from Lemma 2 that $(j)_{i \le e}$ $(m \oplus Q_i)$. But then e < i, since $m \in Q_i$.

LEMMA 4. The set $Q_i \cap A$ has at most i members.

PROOF. Suppose m and n are distinct members of $Q_i \cap A$. Lemma 3 guarantees the existence of s(m), e(m), s(n) and e(n) with properties as stated in the conclusion of Lemma 3. Thus

$$\{m\} = A^{s(m)} - A^{s(m)-1} \& \{n\} = A^{s(n)} - A^{s(n)-1}.$$

Since $m \neq n$, it follows $s(m) \neq s(n)$. But then $e(m) \neq e(n)$, since

$$\{e(m)\} = B^{s(m)} - B^{s(m)-1} \& \{e(n)\} = B^{s(n)} - B^{s(n)-1}.$$

We also know from Lemma 3 that e(m) < i and e(n) < i. Thus we can map the set $Q_i \cap A$ in a one-to-one fashion into the set $\{e \mid e < i\}$.

LEMMA 5. For each e, there is a z such that W_z is contained in the complement of A and such that either $f_e(z)$ is undefined or $f_e(z)$ is not greater than the cardinality of W_z .

PROOF. Fix e. We show that some member of the sequence, z(e, 0), $z(e, 1), \dots, z(e, e)$ serves as the desired z. Suppose there is an $i \le e$ such that $f_e(z(e, i))$ is undefined. Then $W_{z(e,i)} = 0$, and the lemma is proved. Suppose then that $f_e(z(e, i))$ is defined for all $i \le e$. By (1), $f_e(z(e, i))$ is not greater than the cardinality of $W_{z(e,i)}$ for any $i \le e$. Thus it suffices to find an $i \le e$ such that $W_{z(e,i)} \cap A = 0$. The sets,

$$W_{z(e,0)}, W_{z(e,1)}, \cdots, W_{z(e,e)},$$

are nonempty and disjoint. If each of them has a member in A, then their union has at least e+1 members in A. But their union is Q_e , and Lemma 4 tells us that Q_e has at most e members in A.

It follows from Lemma 5 that A is not effectively simple. It also

follows from Lemma 5 that the complement of A is infinite, since otherwise, the constant function

$$f(n) = 1 + \text{cardinality of the complement of } A$$

would constitute a counterexample to Lemma 5. Finally, by Lemma 1, A is simple.

Post [5] calls a recursively enumerable set W hyper-simple if its complement is infinite, and if there does not exist a recursively enumerable sequence of disjoint, finite sets, each one of which contains a member of the complement of W. It can be shown with the help of Lemma 4 that A is not hyper-simple.

The proof of Theorem 1 above is, as far as we know, the first proof in recursion theory to make simultaneous use of the recursion theorem and the priority method of Friedberg [1] and Muchnik [3]. The priority method was needed to resolve the inevitable conflict between putting elements in A as required by Lemma 1 and keeping them out of A as required by Lemma 4. Thus in operation (b), we are not allowed to take m from W_e^s and add it to A^s if for some $j \leq e$, $m \in Q_j^s$. The recursion theorem was needed to prove that our system of priorities does eventually resolve all conflicts happily; in particular, the recursion theorem made possible the proof of Lemma 2.

REFERENCES

- 1. R. M. Friedberg, Two recursively enumerable sets of incomparable degrees of unsolvability, Proc. Nat. Acad. Sci. U. S. A. 43 (1957), 236-238.
 - 2. S. C. Kleene, Introduction to metamathematics, Van Nostrand, New York, 1952.
- 3. A. A. Muchnik, Negative answer to the problem of reducibility of the theory of algorithms, Dokl. Akad. Nauk SSSR 108 (1956), 194-197. (Russian)
 - 4. John Myhill, Creative sets, Z. Math. Logik Grundlagen Math. 1 (1955), 97-108.
- 5. E. Post, Recursively enumerable sets of positive integers and their decision problems, Bull. Amer. Math. Soc. 50 (1944), 284-316.

CORNELL UNIVERSITY