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1. Introduction. We consider in this note the polynomial

(l.i) n a-«-) = z «-»**•
¡fc=l A

For the corresponding infinite product

(1.2) TT (1 - x*) = Z Chx»,
k-X h

the coefficients Ch are given by the "pentagonal number" theorem of

Euler [2, p. 284]. Ch also has a combinatorial definition as follows.

Let P = (bx, • • • , by) be a partition of h into unequal summands

bi, lúiúv. Then C/,= Zp i~ 1)'» the summation being taken over

all partitions P. Moreover, the Euler identity can be proved directly

from this definition [2, Chapter 19]. anh has an analogous definition

in which the largest summand in any partition P is ^». Hence

anh = Ch for h ^ ».

Since the Ch are bounded, it is of interest to determine whether the

anh are bounded for all », a problem raised by Nicol [3, p. 38]. In [4]

we have given a negative answer by showing that log maxA | ank \ ~Kn

lor a constant K>0. Here we obtain two identities which yield an

unbounded sequence of values of a„hJ We will show that

n 00 00

(1.3)        n (i - «*) - z *rcn+i) n (1 - xm),
k=l r=0 m—r+1

and for r > 1,

*m) = Z (-l)'x'<,,+2p-1)/*-(l - x2t+r)

r—1 r

■ n (1 - xt+') n (1 - *-)--.
«-1        »=1

In order to exhibit unbounded values of anh, (1.4) will be utilized

only for r=l and 2. It is convenient, however, to state the general

result which is a special case of a known identity. For convergence,
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1 Professor T. S. Motzkin of the University of California, Los Angeles, obtained

this result by a different method in 1955. His work is still unpublished.

(1.4)

IT (i
m=r+l
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we assume in the sequel that | x| < 1 and \a\ < 1. The index of a sum

or product will always be in the exponents or subscripts of its

terms, and when there is no risk of ambiguity, it will be omitted.

When unspecified, the range of a sum is 0 to <x>, and the empty

product is to be interpreted as unity.

2. Proof of (1.3) and (1.4). We have

(2.1)       n (i - xk) = n a - **) n a - *ri.
1 1 n+l

In Theorem 349 of Hardy and Wright [2] we let /—►» and deduce

that

(2.2) fi (1 - a**)-1 = H M< II (1 - **)_1-
1 < 1

Putting a = x" gives now

n (1 - x')-1

(2.3) "+1
= 1 + x"+V(l - *) + x2"+2/(l - x)(l - x2)-\-.

On substituting (2.3), the right member of (2.1) becomes

( n a -**))( E *r(n+u n a - Xa)-1)

(2.4) V  ' A   ' ' J mCO

= £*-■(-+" n (i - xk).
r t-r+1

(2.4) and (2.1) now give (1.3).

To obtain (1.4) we put & = xr in the following identity of Cayley

and Sylvester [l, p. 140], where \b\ <1.

n (1 - bxk)

(2.5) X - (_t

= 1 + ¿ (-j)«*'«»-»'»(l - bx2') ( n (1 - »«•)) /nt,

wherelli= XIí (1—x*). In order to verify our assertion, we note that

by cross-multiplication,

n (1 - x<+*)/nr=n (1 - x'+o/il,
•=i «=1

where the quotient on the left is that in (1.4). (1.4) was originally
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conjectured by examining the special cases r = l and 2, the form of

which was guessed on multiplying the right member of (1.2) by

(l—x) and (1—x)(l—x2), respectively, and inspecting the resulting

sequence of coefficients.

Since (2.5) seems to be unfamiliar, a short proof is given below.

Dividing through by LÎ" (1 —èx4) gives 1= y^" bugu(x), say, where

gu(x) is a function of x only, and go(x) = 1. Since

00

II (1 - 5**)-1 = Z bW/llt,       t ^ 0
1 »

by (2.2) with a replaced by Z»xt_1, we find after a little reduction that

for «èil,

gu(x) - Z (-i),*-<--)+-<'+1)'V(n«-ntt_t)
0

- E(-i),x'»+('+1"V(ni-ntt_t_i)
o

= n (i - x'+«-i)/nu - n (i - xi+-)/uu.x
X 1

by [2, Theorem 348], and the last expression is 0. This completes

the proof of (2.5).

3. Proof that anh is unbounded. Denote the left member of (1.4)

by Pr(x) and put

(3.1) Pr(x) = ZCm*m-
m

Then we have by (1.3),

[A/(n+U]

(3.2) anh — 2-t        Cr,h-r(n+l)-
0

In order to deduce that anh is unbounded, it suffices to find a minimum

value of r such that the numbers Crm of (3.1) are unbounded. Now

Po(x) has bounded coefficients by the Euler identity. We will show

that Ci,m is bounded and C2,m is unbounded. By (1.4)

(3.3) Pi(x) = Z i-l)'x«3t+1)l2il - x2t+l)/(l - x)

and

(3.4) P2(x) = Z (-l)'x'<3i+3>/2(l - x*+l)(l - x2'+2)/(l - x)(l - x2).

We prove first that the summands of the right member of (3.4)
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are polynomials with unbounded coefficients. It is sufficient to prove

this for

ftix) = (1 - x'+l)(i - x2,+2)/(l - ¡e)(l - x2)

which is evidently a polynomial. Now /¡(l) = (i + 1)2 and/((x) is of

degree 3t, so that its coefficients are unbounded by Dirichlet's box

principle. Next, it is easily seen that for r— 1 and 2, Cm is obtained

from the expansion of a single summand of the right member of (3.3)

or (3.4). Hence Ci,m is bounded and C2,n is unbounded. We now utilize

(3.2) to obtain our final result.

If hú2n + l, r = 0, 1 only in (3.2) and anh is bounded for h in this

range. Suppose now that 2n+2^h^3n+2. Then

anh = C2,a_(2b+2) + 0(1).

Put R = h — (2n+2). Then anh is unbounded as

n—> »,   P—> »,   P < n + 1.

Furthermore, (1.4) and (1.3) provide a relatively simple explicit

formula for a„h when h^3n + 2.

For all r, the summands of (1.4) are polynomials, a proof of which

we indicate for completeness. Each summand is a quotient/(x)/g(x)

of two polynomials/(x) and g(x), the zeros p of which are roots of

unity. We count the multiplicity M„(p) of any zero of g(x) and show

easily that Mg(p)^Mj(p), the corresponding multiplicity for f(x).

However, for r^3 the numbers C,m of (3.1) are not obtained from a

single summand of (1.4).

The method of proof in this paper was obtained after I read a

reference to Motzkin's result. I wish to express my gratitude to him

for encouraging the publication of my paper and to the referee for

pointing out several obscurities. The proof of (1.4) contained herein

was discovered after this paper had been accepted for publication

and replaces an earlier and much less efficient verification.

Added in proof. Dr. John B. Kelly of Arizona State University has

pointed out to me that we can dispense with (3.4) in proving that

C%,m, and hence anh, is unbounded. His argument runs as follows.

On dividing through by 1—x in (3.3), it is clear that the sequence

Ci,n consists of blocks of consecutive terms separated by zeros such

that the fth such block contains exactly 2t — 1 terms all equal to

(-1)'-1. By the definition of Pr(x), we have P2(x) =Pi(x)/(l-x2),

and the coefficient of xm in the expansion of P2(x)(l+x) is



20 CULBRETH SUDLER, JR.

^  —   2-4 Gl.it —  C2tm + C2,m-1.
0

Choose m = m(t) so that Ci,m is the last term of the /th block. Then

|S| =t and Max(C2,m, C2,m-i) is unbounded, which gives the result.

References

1. L. E. Dickson, History of the theory of numbers, Vol. II, Chelsea, New York,

1952.
2. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th

ed., Oxford Univ. Press, Oxford, 1960.

3. C. A. Nicol and H. S. Vandiver, On generating functions for restricted partitions

of rational integers, Proc. Nat. Acad. Sei. (U.S.A.) 41 (1955), 37-42.
4. C. Sudler, Jr., An estimate for a restricted partition function, Quart. J. Math.

Oxford Ser. (2) (to appear).

Los Angeles, California


