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The purpose of this note is to prove a theorem which shows a

connection between the definition of a prime ideal in classical alge-

braic number theory and the usual definition of a prime ideal. A

proper ideal in an integral domain with unit element is an ideal differ-

ent from the unit ideal and the zero ideal. An ideal A will be called

nonfactorable provided A is a proper ideal and A =BC (where B and

C are ideals) implies that either B or C is the unit ideal.

Theorem. If J is an integral domain with unit such that every proper

ideal of J is either a nonfactorable ideal or can be factored uniquely into

a product of nonfactorable ideals, then J is a Dedekind domain and the

nonfactorable ideals are prime in the usual sense.

Proof. Let P be a proper prime ideal of J and p ^ 0 be an element

of P. There exist nonfactorable ideals Nx, • • • , Nn in J such that

(p) = Nx.Nn. Let Ni be an arbitrary member of the collection

Ai, • • • , Nn. Since (p) is an invertible ideal, it follows that A,- is an

invertible ideal and consequently A,- is finitely generated (see [l,

p. 272]).
Let x be any element of J such that x is not an element of N,.

Since Ni is finitely generated, then Aj + (x) is finitely generated. The

cancellation law for ideals is valid in / (an obvious consequence of

the unique factorization property) and therefore finitely generated

ideals are invertible (see [2, p. 13]). Hence A,+(x) is invertible and

since Ni-\-(x)Z)Ni there exists an ideal Q in /such that [A, + (x)]-(2

= Ai. It is clear that A¿ + (x) = J and A¿ is a maximal ideal.

Since P is a prime ideal and PDAi.An it follows that

PDNi lor some i and therefore P is invertible. Hence every proper

prime ideal of J is invertible and / is a Dedekind domain (see [3,

Theorem 7, p. 33]).
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