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ON ERGODIC MEASURES

YAEL NAIM DOWKER AND G. LEDERER

Introduction, notation, definitions and known results. In what fol-

lows ß will be a compact metric space and T a homeomorphism of ß

onto itself. The pair (ß, T) is called a compact discrete dynamical sys-

tem. If m is a Borel measure in ß such that m(Q) = 1, m is called a

normalised Borel measure. Throughout this paper all measures will

be assumed to be normalised Borel measures. If for any Borel set B,

m(B)=m(TB), m is called an invariant measure. Ergodic invariant

measures will simply be referred to as ergodic measures. If, for some

set A, T(A)=A, A will be called an invariant set. A nonempty,

closed, invariant set which has no proper subset of the same proper-

ties is called a minimal set.

The empty set will be denoted by 0. Given two sets A and B,

'AÇZB' will stand for 'A is a subset of B', while 'A EB' for 'A is a

proper subset of B'.

The set of points p, T(p), T2(p), • • • is called the positive semi-

orbit of p and will be denoted by 0P. The set of limit points of the

sequence p, T(p), T2(p), ■ ■ • in ß is called the co-limit set of p and

will be denoted by cop. The set of points p, T(p), T~x(p), T2(p),

T~2(p), • ■ • is called the orbit of p and will be denoted by 0P. The

closure of the semiorbit (orbit) in ß is called the semiorbit closure

(orbit closure) and will be denoted by 0P(0P). ïfl(p, p) will denote the

open sphere about p of radius p.
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C(ß) will denote the space of all real-valued continuous functions

defined on ß with the norm ||/(x)|| = MaxIgn |/(x) |.

For any/(x) in C(Û) put F„(x) = (l/w) Zl-o1/(T'ix)). We call p a

mean point ipEQ), il lim«..«, Fnip) exists for every/(x) in C(Q). In

that case we put lim„,M Fn(p) = F(p). The notion of a mean point is

due to Krylov and Bogoljubov who called such a point a quasi-

regular point (cf. [2, p. 93]). They showed that Q^cp, if Q ;■*<£. They

also showed that to each mean point there corresponds a unique in-

variant measure. This is obtained in the following manner:

Fix a mean point p and for any f(x) in C(Q) put L(f) = F(p). Then

L(f) is a positive linear functional on C(£2). Moreover, L(f) is invari-

ant, i.e., L(f) = F(p) = F(T(p))=L(Tf). Hence, by a well-known
theorem of F. Riesz (cf. [4]), there is a unique measure u in Q. such

that u is invariant and

L(f) = f fi*)dß(x)

for every/(x) in C(ti). u is the invariant measure corresponding to p

which we shall denote by jup.

A mean point p is called transitive (pEQr) if uv is ergodic. A mean

point p is called dense (pEQd) if up(U)>0 lor every open neighbour-

hood U of p. We put R = Qd(~\Qt. Points of R are called regular

points.

We give now a few theorems due to Krylov and Bogoljubov. See

[3] for a concise, comprehensive summary of these.

K.B. 1. Q, QT, Qd and R are nonempty, invariant Borel sets, and for

any invariant measure m, m(R) = \. Hence, there is at least one

ergodic measure /x in Œ. (¡x=nP for some p in Qt.)

Not only does any point p in QT determine uniquely an ergodic

measure up, but every ergodic measure u in ß is determined this way

by some point p of R (REQt)- In this manner Qt can be decomposed

into disjoint invariant sets, called quasi-ergodic sets, each of which

consists of all transitive points which determine one and the same

ergodic measure in fl. The intersection of each quasi-ergodic set

with R is nonempty, invariant and is called an ergodic set. Ergodic

sets then form the corresponding decomposition of R. Thus

K.B. 2. There is a 1-1 correspondence between the class of ergodic

measures in £2, the class of quasi-ergodic sets in Qt and the class of

ergodic sets in R. In this correspondence, if E is the ergodic and E'

the quasi-ergodic set corresponding to the measure jot, then E and £'

are Borel sets, EQE', ß = up lor every p in E', and p(E) = 1. More-

over, for every Borel set B, pp(B) is a Borel-measurable function of p,

and for any invariant measure ¡x
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KB) =  f Up(B)dp(p) =  f    Up(B)dp(p).
J R J QT

K.B. 3. If A is a closed invariant set and E any ergodic set, then

either A(~\E = E or AC\E = 0. In the former case E is an ergodic set

of (A, T).
K.B. 4. If E is an ergodic set and pEE, then EQOP.

K.B. 5. If £1 and £2 are two distinct quasi-ergodic sets, there is a

function f(x) in C(Q) and there are two distinct real numbers ci and

c2 such that £(x) = cx on £1 and F(x) = c2 on £2.

The following theorem follows easily from the Krylov and Bogo-

ljubov theory. See [3, p. 124] for a proof.

0. If all points of ß are mean points and M is a minimal set, then

M is an ergodic set.

The following theorems are due to one of us:

D.I. lipEQ, then Pp(Ö+) = I.
D. 2. If p is not a transitive point, then 0^ contains at least two

ergodic sets.

D. 3. Let pE& and let A be a nonempty, closed, invariant proper

subset of O*. Let U be an open set such that A EU and 0^%U.

There is then a compact set K such that A EKÇ. U and TKQK.

For a proof of theorems D. 1, D. 2, and D. 3, see [l, pp. 126-128].

D. 1 and D. 2 are Lemmas 3 and 7, respectively. D. 3 is an immediate

consequence of K and Lemma 8.

One of us has shown (cf. [l]) that if ß has an infinity of points, it

has an infinity of transitive points. In this paper we deal with the

question of existence of an infinity of ergodic measures. It is known—

as expressed in 0—that if ß is itself a minimal set and all points in ß

are mean points, then there is only one invariant measure in ß. The

question arises whether there can be more than one such measure in

ß if all points of ß are mean points and ß contains a single minimal

set properly. While this problem is still unsolved, a partial answer is

provided in this paper.

Theorem. Let (ß, T) be a discrete dynamical system. Let each point

of il be a mean point and let ß contain a single minimal set properly.

Then the number of ergodic measures in ß is either one or infinite.

Proof. Assume that the hypotheses of the theorem hold and denote

by M the minimal set. By K.B. 1 there is at least one ergodic meas-

ure in ß. Assume next that the number of ergodic measures in ß is

at least two. Then ß has at least two ergodic sets of which M is one

(0). Let k be the cardinal number of the class of ergodic sets of ß.
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Then k ¡î2. Assume now that k is finite. Denote by E one of the

ergodic sets of ß (E^M). Fix a point p in E. (p will denote the

same point for the rest of the paper.) Then, by K.B. 4, EÇ.OP. Put

0P = X. Then X is an invariant, closed subset of fl. We confine our

attention to the system (X, T). The symbols Q, R and uq (for any q

in X) will refer to X. Clearly, all assumptions on (Q, T) hold for

(X, T). By K.B. 3, X has at most k ergodic sets. These clearly in-

clude E and M. Denote the quasi-ergodic sets of X by Ei, E2, • • • ,

Ej (j&k, ECEx = E', MQEj).
We assert now that X = cop. To prove this, note that for any integer

n, Tnip)EEER, and hence if U is an open neighbourhood of Tnip),

uPiU)>0. Now assume that X^cop. There is then an open set U con-

tained in X—cop and there are integers «0 and N such that Tn°(p) E U

while T»(p)EX-U for all n^N. Hence, by D. 1, ap(X- U) = 1,
while pp(U)>0—which is absurd. Thus X = cap and hence E is dense

in A.
Now if qEE', then pt = up in X. Hence if qEE' and U is any open

neighbourhood of q, then since Tn(p)EU for some n, uq(U)=up(U)

>0. Thus all points of E' are regular. Hence E = E'.

We assert next that for 1 <iúj, Ei is nowhere dense in X. To prove

this, assume that for some i (1 <i^j) Ei is dense in an open sphere U

of X. Since X = cop, there is an integer Wi such that Tni(p)EU. Now

take any open sphere V of X. Since X=0Pn, there is some integer n2

for which Tn2(p)EV. Put n = n2-nx. Then Tn(Tl(p))E V. Hence

VT\Tn(U) is a nonempty, open set. Since Tn(E,)=Ei and Ei is

dense in Í7, £¿ is dense in r"(t7). Hence Etnvr\Tn(U)^0, i.e.,

EiC\'Vjí0. Since F was arbitrary, we conclude that if £¿ is not no-

where dense in X, it must be dense in X.

Now since Ex and £¿ are distinct quasi-ergodic sets, by K.B. 5

there is a function f(x), continuous on X, and there are real con-

stants Cx and Cj such that Cx^Ci, F(x) =Cx on Ex and F(x) = c¡ on £,-.

Now since all points of X are mean points, F(x) is defined for all x

in A. Then since Ex is dense in X, if £< is also dense in X, F(x) is

discontinuous at every point of X. This is impossible, since F(x) is

of Baire class 1. Thus £¿ is not dense in X. It is therefore nowhere

dense.

We conclude that the set U/_2 Ei is nowhere dense.

Put iî=U/_2 Ei. Then H is nowhere dense, closed and invariant.

There is then a point x in X and a positive number p such that

3l(x, 2p)i\H = 0. Put U = X- [3l(x, p)]~. Clearly, i/is open. More-

over, since X = cop, there is a positive integer n lor which Tn(p)

EVL(x,p)QX-V. Thus
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HEU     and     0*ff ¿7.

Then since Í7 is open and H is an invariant closed subset of 0%, there

is, by D. 3, a compact set K such that

HEKQÜ   and    TK Q K.

There is thus a point g in K — H, such that «„ÇO^Çi^C-^- Hence

oiq^X. We have proved that if xEE', then cox = X. Hence qEE' =E.

Also £ is dense in X, coq is closed and cúq¿¿X. Thus £$cog. Then, by

K.B. 3, since co9 is invariant and closed, EC\u>q = 0.

Since qEE' and qEK — H, g££U/=1 E¡. Hence q is not transitive

nor is any point of 0q. Thus, by D. 2, 0q contains at least two ergodic

sets. Clearly, M is one of these. Also, no point of 0q is regular. Thus

ws contains at least two ergodic sets of which M is one, while £P\co9

= 0. Put coq = ßi. Then ßi is an invariant, closed, proper subset of ß,

consisting of mean points only, containing a single minimal set prop-

erly and containing (by the above and by K.B. 3) at least two and

at most k — l ergodic sets.

The process can be repeated any number of times yielding a de-

creasing sequence ß, ßi, ß2, • • • , ßr, • • • of invariant closed sets,

where for each r ßr contains at least two and at most k — r ergodic sets.

A contradiction is obtained for r = k — l. Our assumption that k is

finite was false and the theorem is proved.

Corollary. Let the hypotheses of the theorem hold. Then, if there are

two distinct invariant measures in ß, there is an infinity of distinct

ergodic measures in ß.

Proof. By K.B. 2, if there is only one ergodic measure in ß, there

can be only one measure in ß. The corollary follows now from the

theorem.
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