
ON A CLASS OF OPERATORS
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1. Introduction. There is a large class of bounded operators on

Hubert space whose resolvents have first order rate-of-growth. By

such an operator is meant one whose resolvent at a point X has its

norm dominated by the reciprocal of the distance from X to the con-

vex hull of the spectrum of the operator. They can be given a geo-

metrical characterization, namely that their numerical ranges coin-

cide with the convex hulls of their spectra. It will also be shown that

an operator is in this class when "enough" points of its numerical

range have their moduli equal to the norm of the operator. Every

normal operator is in this class. In addition, many nonnormal oper-

ators are in this class. Using results of Halmos and Bram [4; l], it

can be shown that every subnormal operator is also in it.

The author wishes to express his gratitude to Professor Frantisek

Wolf for his encouragement and helpful suggestions during the prepa-

ration of this paper.

2. Some preliminaries. The notation and terminology to be used

are for the most part standard and will tend to conform with [3 ] and

[8]. However some items should be mentioned explicitly. Only

bounded operators on complex Hubert spaces are considered; a(T),

2(F), |<r(r)|, p(T), and R\(T) denote respectively the spectrum of

the operator T, the (automatically closed) convex hull of a(T), the

spectral radius of T, the resolvent set of T, and (T—X)-1 for XEp(F).

When there is no possibility of confusion, these symbols will be sim-

plified to a, 2, etc. The distance between a point X and a set 5 (in

the complex plane) is indicated as d(K, S).

Let T be an operator on a Hubert space H. Let W(T) be the closure

of the set of complex numbers, {(Tx, x) : xEH and ||x|| = 1} ; it is the

numerical range of T. The numerical radius of T, denoted by | W(T) \,

is the sup{|X| : XG1F(F)}. Certain facts are known about W(T),

e.g. see [8]. Among them are: W(T) is a convex subset of the complex

plane ; a(T) EW(T); if Tis normal then W(T) = 2(F) ; ¿|| T\\ ú\W(T)\

ú\\T\\ ; and W(aT+ß) =aW(T)+ß, where« and ß are complex num-

bers.

For any operator T it is always true [2, p. 566] that [d(X, <r)]-1
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Ss||£x||. In the case of a normal operator the opposite inequality also

holds (by a simple application of the spectral theorem). The oper-

ators considered in this paper will satisfy a slightly weakened in-

equality, namely that ||i?x|| g [d(\, 2)]-1 for all X(£2. Also for any

operator T and X<$2 the fact that ||£x|| â [d(\, 2)]-1 if and only if

d(X, 2)-||y|| á||7y— Xy|| for all y EH, will be used frequently.

Lemma 1. Let T be an operator satisfying \\R\(T)\\ 5¡ [d(\, 2(2")) ]_1

for some X£2(J'). Let a^O and ß be complex numbers. Then z—*az+ß

maps the complement of 2(7") onto the complement of ~S(aT+ß), and

aT+ß satisfies

1
\\R^+ß(aT + ß)\\ g-■-
"      +A W"      d(a\ + ß,Z(aT + ß))

Proof. The complex plane is mapped onto itself by z—*az+ß, since

a¿¿0. As is well known, o(T) is mapped onto o(ctT+ß) and conse-

quently 2(2") is mapped onto 2(a2"+/3). The first conclusion then

follows by taking complements.

From the hypothesis we get d(X, 2(7")) -||y|| á||2";y — Xy|| for all y

so that

| «| .d(X,2(D)'|jy|| = d(a\,aX(T))-\\y\\ = ¿(aX,2(aD)-||y||

= á(«X + j8,2(ar)+/í)-y

= d(cA + ß,V(aT + ß))-\\y\\ á  \a\ -[Jz-y — Xy||

- \\(aT + ß)y- (a + ß)y\\.

This gives the second conclusion.

Lemma 2. ||£x|| g 1/X/or aWK>0 if and only if Re W(T) <0.

Proof. For all y and X>0, X||y | s¡||(2" —X)y|| if and only if for all

y and X>0, X2||;y||2g||2":y||2+X2||:y| 2-2X Re(2";y, y) if and only if for

all y and X>0, 2X Re(7y, y) ̂ || Ty |2 if and only if for all y, Re(2"y, y)
£0 if and only if Re W(T)^0.

3. Main results. Toivo Nieminen kindly communicated the fol-

lowing theorem to me. It is published here with his permission [7].

Theorem 1. If <r(T) is real and \\R\\\ ^ |X|-1 for all nonzero, purely

imaginary X, then T is self-adjoint.

Proof. Let \ = ip so ||i?<M|| è |m|_1- Therefore, for all yEH and p

nonzero real, |jlc| -||y|| á||T"y — ipy\\ so that M2|HI2 = l|2"3'll2"h|i2IHIi
— 2plm(Ty, y) or 2plm(Ty, y)ú\\Ty\\2. Hence Im(2";y, y)=0 and

(Ty,y) is real. This is equivalent to the self-adjointness of T.
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Theorem 2. If T is an operator satisfying ||i?\|| = [¿(X, 2) ]_1 for all

\E^(T),then W(T)=2(T).

Proof. Since 2(F)ClF(r), only the opposite inclusion must be

shown. Let L be a line-of-support for 2(F). The closed half-plane so

determined which contains 2(F) will be shown to contain W(T).

Now L touches 2(F) at a point 7. There are complex numbers a and

ß with I a I =1, such that the rigid motion z—>az+ß takes y into the

origin, L into the y-axis, and 2(F) into part of the left closed half-

plane. Under this mapping X(T)-^oiS(T)+ß = 'Z(aT+ß) and W(T)

—>aW(T)-\-ß= W(aT+ß). Application of Lemma 1 yields

\\Ral+ß(cxT + 0)11   =  -—-
" m      d(a\ + ß,Z(aT + ß))

for all a\+ßE2(aT+ß). Now ock+ß may be taken strictly positive

so that the hypothesis of Lemma 2 is satisfied. Therefore Re W(a T+ß)

= 0. By the rigidity of the mapping, W(T) must initially have been

on the same side of L as 2(F).

Somewhat surprising is the fact that the converse of Theorem 2 is

also true.

Theorem 3. // T is an operator with W(T)='2(T) then ||i?x||

ú[d(\, 2)]-1/or<z«X<$2(F).

Proof. Take any X£f IF(F) =2(F). To each such X there corre-

sponds a unique yEW(T) such that d(\, W(T)) = [X—y]. The line

L through 7 and perpendicular to the line joining X and 7 is a line-

of-support for W(T). There are complex numbers a and ß with

I a I = 1 such that the rigid motion, 2—>az+/3, carries 7 onto the origin,

L onto the y-axis, X onto jX — -y |, and W(T) into the closed left half-

plane. This maps W(T)=2(T) onto W(aT+ß) =2(aT+ß). By

Lemma 2

\\RlX-y\(aT + 0)11 è -.-r = —i-—i-
" "       IX — -rl       d(\\-y\,2(*T + ß))

Now 2—XX2+/3 has an inverse mapping which is of the same form.

Use Lemma 1 on this last inequality and the inverse map. This yields

\\R,(T)\\è[dÇK,2(T))]-\
There is also the following relationship.

Theorem 4. | <r(F) [ = || F|| if and only if \ W(T) \ = || F||.

Proof. The forward implication is clear from the fact that | «r(F)|

^\W(T)\^\\T\\.
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NowletXGW(r) and |X| =||2"||. If X is to be in o(T) then it must

be on the boundary of o(T) and so be in the approximate point

spectrum. Hence a sequence {x„j of unit vectors must be produced

suchthat ¡|(2" -X)xn||2-+0. But||(2" - X)xn||2 = ||7"xn||2 + |X|2 -

2 Re X(2"x„, x„) ^2|X|2 —2 Re \(Txn, xn). Now choose {x„} such that

(Txn, x„)—>X. This does the trick and \Eo(T).

Corollary. If\EW(T) and |X| =||r|| then\Eo(T).

Before proving the next theorem, some preliminary results regard-

ing plane convex sets must be discussed. First a notion related to

that of extreme point and exposed extreme point must be defined.

Let C be a compact convex subset of the plane. A point pEC is bare

if there is a circle through p such that no points of C lie outside this

circle.

Lemma 3. Let C be a nonempty compact convex subset of the plane,

and let S be the collection of all of its bare points. Then C is the closed

convex hull of S.

Proof. (This proof is a modification of one suggested by Lester E.

Dubins.) If C consists of one point, this point is in 5. If C consists of

more than one point its diameter is assumed at two distinct points.

That these points are in 5 can be seen by considering a circle centered

at one and passing through the other. Thus 5 is nonempty. Let D be

the closed convex hull of S, so DEC. Suppose D^C. Then there is a

closed half-plane P which contains D and whose boundary, L, is a

line-of-support for D, while the complementary open half-plane con-

tains a point pEC — D. Let M be a line through p and parallel to L.

There is a circle containing P(~\C in its interior and disjoint from M.

Let its center be q. Of all circles centered at q and containing C there

is a smallest which touches C at a point r. Then r is a bare point

which necessarily is not in D, a contradiction.

The next theorem states a sufficient "geometrical" condition for an

operator to have a resolvent with first order rate-of-growth.

Theorem 5. Let |X| = || 2"|| for each \EW(T) which is a bare point.

ThenW(T)=2(T).

Proof. It is only necessary to show that ~Z(T)~Z)W(T), since the

opposite inclusion is always automatically true. Via an invocation of

Lemma 3, it is sufficient to show that each bare point of W(T) is in

a(T). This follows from the hypothesis and the corollary to Theorem

4.
(Added October 5, 1962. The referee has kindly pointed out that
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(i) Theorem 4 is included in Proposition 7, p. 34, and Theorem 4,

p. 32 of [5], and that the "only if" part is well known, and (ii) the

"if" part of Lemma 2 is included in Lemma 3.1, p. 686 of [6].
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