A SIMPLY CONNECTED 3-MANIFOLD IS S³ IF IT IS THE SUM OF A SOLID TORUS AND THE COMPLEMENT OF A TORUS KNOT

JOHN HEMPEL

It has been shown [6] that any closed, connected, orientable 3-manifold can be constructed by removing a finite number, k, of mutually exclusive tame solid tori¹ from the 3-sphere, S^3 , and then sewing them back in some possibly different manner. In particular, any homotopy 3-sphere can be obtained in this manner; thus it gives an approach to the Poincaré Conjecture.

We wish to consider the case k=1. To this end let T be a tame solid torus in S^3 and let M be a simply connected 3-manifold containing a solid torus S such that there is a homeomorphism h of $S^3-\operatorname{Int}(T)$ onto $M-\operatorname{Int}(S)$. It is known [1] that M is S^3 if T is unknotted or if T has the type of a trefoil knot. In [5] it is asserted that M is S^3 in every case. The proof given in [5] shows only that h must take some longitude of T onto a longitude of S—a fact that is not sufficient to prove this assertion. The purpose of this paper is to provide a proof that M is S^3 in the case that T has the type of a torus knot.

We first give a canonical description of the torus knot of type (p, q). We consider S^3 as the one point compactification of E^3 which we represent in cylindrical coordinates (r, θ, z) . Let R be the torus $R = \{(r, \theta, z) : (r-2)^2 + z^2 = 1\}$. Let p and q be relatively prime positive integers. We assume, for convenience, that p > q; since it is known that the torus knots of types (p, q) and (q, p) are equivalent. For $1 \le k \le p$ let $x_k = (3, 2k\pi/p, 0)$ and $y_k = (1, 2k\pi/p, 0)$. Let a_k be an arc on R from x_k to y_{k+q} that lies in the positive z half space and which increases monotonically with θ . (It is to be understood that the subscripts are to be reduced modulo p.) Let b_k be the arc on R from x_{k+q} to y_{k+q} that lies in the negative z half space and the plane $\theta = 2(k+q)\pi/p$. We denote the simple closed curve $\bigcup_{k=1}^p (a_k \cup b_k)$ by $K_{p,q}$. Figure 1 shows $K_{5,3}$.

Presented to the Society, November 17, 1962; received by the editors September 27, 1962.

¹ A solid torus T is a set homeomorphic to the Cartesian product of a disk and a simple closed curve. Any simple closed curve on Bd T which bounds a disk in T but which does not separate Bd T is called a meridian of T. Any simple closed curve on Bd T which does not separate Bd T, which is not a meridian of T, and which intersects some meridian of T in exactly one point is called a longitude of T.

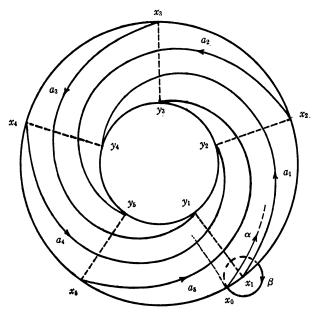


FIGURE 1

It is well known that any torus knot (i.e., a simple closed curve which lies on a tame, unknotted torus in S^3) can be taken onto one of the curves $K_{p,q}$ by a (possibly orientation reversing) homeomorphism of S^3 onto itself.

The fundamental group of $S^3 - K_{p,q}$ can be given a presentation in the standard manner (see [4, Chapter III]) with the overcrossings, a_k , representing generators and the undercrossings, b_k , giving the relations. The convention we adopt is that the generator a_k represents a loop which begins at the base point x_0 (which we choose to be obtained by moving x_1 slightly in the negative θ direction as shown in Figure 1), passes under the segment a_k from left to right (in terms of the orientation assigned to a_k), and returns to x_0 . It is understood that this loop passes under no other segment in the projection of the knot.

The relation corresponding to the undercrossing b_k may be read in the standard manner (see Figure 2), and we obtain the following presentation of $\pi_1(S^3 - K_{p,q})$.

(1)
$$\{a_1, a_2, \cdots, a_p : a_k a_{k+1} \cdots a_{k+q-1} = a_{k+1} a_{k+2} \cdots a_{k+q} \},$$

$$k = 1, 2, \cdots, p.$$

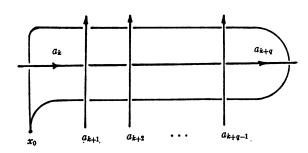


FIGURE 2

If we let $X = a_1 a_2 \cdots a_q$, $Y = a_1 a_2 \cdots a_p$, we show in the following manner that X and Y generate $\pi_1(S^3 - K_{p,q})$. Since p and q are relatively prime, there are integers r and s such that rp + sq = 1. If r > 0 (hence s < 0), then

$$Y^{r} = (a_{1}a_{2} \cdot \cdot \cdot a_{p})(a_{1}a_{2} \cdot \cdot \cdot a_{p}) \cdot \cdot \cdot (a_{1}a_{2} \cdot \cdot \cdot a_{p})$$

$$= a_{1}(a_{2}a_{3} \cdot \cdot \cdot a_{q+1})(a_{q+2}a_{q+3} \cdot \cdot \cdot a_{2q+1}) \cdot \cdot \cdot (a_{p-q+1}a_{p-q+2} \cdot \cdot \cdot a_{p})$$

$$= a_{1}X^{-s}.$$

While if r < 0 (hence s > 0), then

$$X^{\bullet} = (a_{1}a_{2} \cdot \cdot \cdot a_{q})(a_{q+1}a_{q+2} \cdot \cdot \cdot a_{2q}) \cdot \cdot \cdot (a_{p-q+2}a_{p-q+3} \cdot \cdot \cdot a_{p}a_{1})$$

$$= (a_{1}a_{2} \cdot \cdot \cdot a_{p})(a_{1}a_{2} \cdot \cdot \cdot a_{p}) \cdot \cdot \cdot (a_{1}a_{2} \cdot \cdot \cdot a_{p})a_{1}$$

$$= Y^{-r}a_{1}.$$

In either case we see that $a_1 = Y^r X^s$. By the same technique we can show that $a_2 = X^{-s} Y^r X^{2s}$, \cdots , $a_k = X^{(1-k)s} Y^r X^{ks}$. Using these relationships it can be shown that $\pi_1(S^s - K_{pq})$ has the following presentation in terms of the elements X and Y:

$$\{X, Y: X^p = Y^q\}.$$

To verify this one need only show that the maps $\phi: (1) \rightleftharpoons (2) : \psi$ generated by $\phi(a_k) = X^{(1-k)s} Y^r X^{ks}$, $\psi(X) = (a_1 a_2 \cdots a_p)$, and $\psi(Y) = (a_1 a_2 \cdots a_p)$ preserve relations and that $\phi \psi = 1$ and $\psi \phi = 1$.

We are now prepared to prove our result. First we state the following well-known

LEMMA. Suppose M and N are 3-manifolds containing solid tori T and S, respectively, and h is a homeomorphism of $M-\mathrm{Int}(T)$ onto $N-\mathrm{Int}(S)$ which takes Bd T onto Bd S and which takes some meridian of T onto a meridian of S. Then h can be extended to a homeomorphism of M onto N.

THEOREM. Suppose T is a tubular neighborhood of the torus knot $K_{p,a}$, M is a 3-manifold, and S is a solid torus in M such that S^3 -Int(T) is homeomorphic to M-Int(S). Then if M is simply connected, M is homeomorphic to S^3 .

PROOF. We assume without loss of generality that $T \cap R$ is an annular neighborhood of $K_{p,q}$ on R one of whose boundary components, which we denote by α , contains the point x_0 . By choosing the proper orientation for α we see that α represents the element $(a_1a_2 \cdots a_p)^q = Y^q$ of $\pi_1(S^3 - \operatorname{Int}(T))$. We let β be the component of the intersection of the plane z = 0 with Bd T which contains x_0 . Properly oriented, β represents the element a_1 of $\pi_1(S^3 - \operatorname{Int}(T))$; furthermore α and β serve as generators for the abelian group $\pi_1(\operatorname{Bd} T)$.

Now let $h: S^3 - \operatorname{Int}(T) \to M - \operatorname{Int}(S)$ be the homeomorphism given by the hypothesis. Let γ be a meridian of S containing the point $h(x_0)$. Now $h^{-1}(\gamma)$ represents an element of the form $\alpha^m \beta^n = (a_1 a_2 \cdots a_p)^{qm} a_1^n = Y^{qm} (Y^r X^s)^n$. We obtain $\pi_1(M)$ from $\pi_1(S^3 - \operatorname{Int}(T))$ by adjoining the additional relation $h^{-1}(\gamma) = 1$. This yields the following:

(3)
$$\pi_1(M) = \{X, Y: X^p = Y^q, Y^{qm}(Y^rX^s)^n = 1\}.$$

We will show that m=0, $n=\pm 1$; hence that $h^{-1}(\gamma)$ is a meridian of T. In light of the previous lemma, this will complete the proof.

The commutator quotient group of $\pi_1(M)$ has the presentation $\{a_1: a_1^{pqm+n}=1\}$. Since this group is trivial, we must have $n=\pm 1$ -pqm. Now neither p nor q is 1; for otherwise T would be unknotted. Suppose that $m\neq 0$. Then $n\neq 0$, ± 1 . We will show that this assumption leads to a contradiction as follows.

Consider the group:

$$G_{p,q,n} = \left\{ R_1, R_2, R_3 \colon R_1^2 = R_2^2 = R_3^2 = \left(R_1 R_2 \right)^q = \left(R_2 R_3 \right)^p \\ = \left(R_1 R_3 \right)^n = 1 \right\}.$$

If p, q, $n \neq 0$, ± 1 , this group is nontrivial [2, p. 55]. $G_{p,q,n}$ may be represented as follows. Let PQN be a triangle with angles $\pi/|p|$, $\pi/|q|$, and $\pi/|n|$ in the hyperbolic plane, the plane, or the 2-sphere according as $\pi/|p| + \pi/|q| + \pi/|n|$ is less than, equal to, or greater than π . We let R_1 , R_2 , and R_3 be reflections through the "lines" on QN, PQ, and PN, respectively. Then R_1R_2 , R_2R_3 , and R_1R_3 , respectively, are rotations of angles $2\pi/|q|$, $2\pi/|p|$, and $2\pi/|n|$ about the vertices Q, P, and N. We can obtain a nontrivial representation of $\pi_1(M)$ into $G_{p,q,n}$ given by $\eta(X) = (R_2R_3)^q$, $\eta(Y) = (R_1R_2)^p$. Note that $\eta(X^p) = (R_2R_3)^{pq} = 1 = (R_1R_2)^{pq} = \eta(Y^q)$, and that $\eta(Y^{qm}(Y^pX^q)^n)$

 $=(R_1R_2)^{pqm}((R_1R_2)^{pr}(R_2R_3)^{qs})^n=((R_1R_2)^{1-qs}(R_2R_3)^{1-pr})^n=(R_1R_2R_2R_3)^n$ = $(R_1R_3)^n=1$. Hence η is a homomorphism. This gives the contradiction that $\pi_1(M)$ is nontrivial. Thus we have m=0. Since γ is a simple closed curve, we must have $n=\pm 1$, and the proof is complete.

Note that the homeomorphism between S^3 and M given by the conclusion of the above theorem was an extension of the homeomorphism between $S^3-\operatorname{Int}(T)$ and $M-\operatorname{Int}(S)$ given by the hypothesis. From this observation we can state the following as a direct consequence of the above theorem. (It was pointed out by the referee that this corollary is a known result. See [3, p. 183].)

COROLLARY. Suppose T is a tubular neighborhood of the torus knot $K_{p,q}$ and h is a homeomorphism of $S^3 - \text{Int}(T)$ onto a tame subset of S^3 . Then h can be extended to a homeomorphism of S^3 onto itself.

REFERENCES

- 1. R. H. Bing, Necessary and sufficient conditions that a 3-manifold be S³, Ann. of Math. (2) 68 (1958), 17-37.
- 2. H. S. M. Coxeter and W. O. Moser, Generators and relations for discrete groups, Springer, Berlin, 1957.
- 3. Herman Gluck, *The reducibility of embedding problems*, Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, N. J., 1962.
 - 4. K. Reidemeister, Knotentheorie, Chelsea, New York, 1948.
- 5. Akira Tominaga, A unique embedding of a torus homotopic to 0 in a 3-manifold, J. Sci. Hiroshima Univ. Ser. A-1 25 (1961), 1-2.
- 6. A. H. Wallace, Modifications and cobounding manifolds, Canad. J. Math. 12 (1960), 503-528.

University of Wisconsin and Florida State University