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Introduction. By a "system of notations" we understand a (1-1)-

mapping, M, from a set L (a segment of Cantor's second number

class) onto a family, F, of disjoint nonempty sets. The members of F

may be, for example, sets of expressions, e.g. such expressions as w,

uX2, w2, €o, etc. Without loss of generality we may assume that the

sets in F are sets of natural numbers. We say "without loss of general-

ity" because expressions of the kind mentioned can always be re-

placed by numbers, using the device of gödel-numbering.

In the most common systems of notations,1 the number "1" is

used as a name for the ordinal 0, and Ia is used to name the successor

of the ordinal named by x. Thus 2, 22, 22, • • • are names, respec-

tively, of 1, 2, 3, • • • . If M is a mapping of the kind described, we

think of the image of the ordinal a as the set of "notations" for a, and

we call this set Na. Thus we may write:

M:a<r* Na.

The reader may wonder why the set Na is allowed to contain more

than one number (i.e., more than one name or notation for the

ordinal a). The reason is that the possibility of having different names

for the same ordinal, e.g. c*> and 2", or «o and w'o, arises in all of the

common systems.

The most important restriction upon the mapping M is that it

should in some sense be inductively defined. This leads us to an ab-

stract "system of notations," D, which we present below. First we

need the

Definition. Let - • • P, x, • - ■ be a formula of second-order

arithmetic containing one free variable P for a two-term relation be-

tween numbers, one free variable x for numbers, arbitrary bound

number variables, but no free or bound higher-order variables except

P. (The constants are to designate numbers and recursive functions

and predicates.) Then the mapping P<->{x| • - - P, x, • • • } associ-

ates with every diadic relation P between natural numbers a set of

numbers, namely the set of all numbers x satisfying • • • P, x, • • • .

Such a mapping is here called an arithmetic operation.2

Received by the editors October 29, 1962.
' Cf. [C], [CK], [KR], [P],
s If • • • P, x • • • be allowed to contain second-order bound variables, then the

operation may be classified as Xv n„ Z2, • • • etc., according to the number and qual-

ity of these. (Cf. footnote 3 below.)
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The following is the system D:

(1) lfa = 0, then A„={l}.
(2) If Nß has already been defined for all ß^a, then Na+l

= {2*\xENa}.
(3) If a is a limit number and Nß has already been defined for all

ß<a, then Na = (p[x$ ix^ay)], where (p is an arithmetic operation

which leads from 2-term relations between natural numbers to sets of

natural numbers.

In the definition of D, part (3), we have used x^ay as an abbrevi-

ation for the 2-term relation (depending on a) :

i3ß)i3y)ixENß&yENy&ße y < a).

We also impose the following:

Restrictions on the choice of (p.

(1) The sets Na defined above must be disjoint.

(2) There must be a limit number a such that Nß9i0 for ß<a,

and Nß = 0 for a^ß (we think of a as "the least ordinal for which

there is no notation in D").

D is, of course, not a single system but a schema for systems (deter-

mining a single system for each admissible choice of (p). In fact, it is

easily shown that all so far proposed systems are of the form D.

Let CD=dí.ÜNa. We shall show that3 CDE^lC\U\. Our short proof

of this fact replaces the lengthy and intricate argument used by

Kreider and Rogers in [KR], since their main result is a special case of

ours. If we place certain further restrictions on 4¡, we can give the

usual definition of the sets4 ÍQn lor nECi¡. We shall show that these

¡QnE^lrSIlJi. Even if we use a "jump operation" in XlCMll instead of

the "one-function-quantifier jump operation" (defined below), the

£>„ are still in Xlr\Tll. Also the §n are still in ZjfMTi even if we let

the operation d¡ be in T^liMll, instead of restricting it to be arithmetic.

Thus we have a very strong closure property of the class S^Lla:

we cannot get out of this class by iterating a jump operation through

all the ordinals for which we have names in a system D unless (i) we

are using a jump operation which is not in 2jP\n¿ (i.e., which already

goes out of 2lr\Hl in one jump) or (ii) we have already used an opera-

tion (f¡ which is not in S^niTa in defining D.

1 A set definable in second order number theory is said to belong to the family

Sn if it can be defined with n function quantifiers, the first of which is existential (in

some prenex form), and is said to belong to the family Hn if it can be defined with n

function quantifiers the first of which is universal, ("function quantifier "= second

order quantifier.)

«a. rsk;p].
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The set §n are the complete sets of the various "hyperdegrees."

Thus, our result may be expressed by saying that even if the series

of "hyperdegrees" is extended through D, we do not get any degrees

for three-function-quantifier sets. Similarly, we shall show that we

cannot get analogues of hyperdegrees for all the analytic sets by using

an analytic jump operation and an analytic operation <p.

Classification of Cd.

Theorem 1. Let D be defined as above, and let Co = UNa. Then

Cx>esjmii

Proof. We have

nECj) «(3a simple-ordering /) ( 3 a 2-place function g) (h) {[ h is a

nonincreasing/-chain =>• (3x)(h(x) = h(x + 1))] & (;y)(the

least element of/ = y=> (z)(g(y, z) = 1 <=>z = 1)) & (y)(z)

(1) (z is the/-successor of y => {w \ g(z, w) = 1} = {2W \ g(y, w)

= 1} ) & (y) (y is a limit element of / =» {w \ g(y, w) = 1}

= d>[xz((3v)(3u)(g(u, x) = 1 & g(v, z) = 1 & («/-precedes

v V « = v) & »/-precedesy))]) & (3x)(g(x, n) = I)}.

Here we have used a well-ordering of all the integers in place of a

segment of the second number class, and we have used the mapping

x*-* {y\ g(x,y) = 1}

as our mapping M (obviously without loss of generality). The prefix

is of the form 3 3V and the reader can readily verify that the matrix

involves only ordinary number quantifiers. In fact (1) becomes:

nECD~iW)isg)(A)[(*)/(*,*) - l & iy)Mifiy,i) = 1 &/(*,y) = 1

=» y = z) & ix)iy)ifix, y) = 1 V fiy, x) = 1) & (*)(?)(«)

(fix, y) = 1 &/(y, z) = 1 =>/(*, 2) = 1) & ((*)/(*(* + 1),

*(*)) = 1 => i3x)hix) = »(s + 1)) & Íy)üz)fiy, z) = 1

=> (»)(«(y, z) = i<=> z = i)) & (y)W(a(y, 2) = 1 & y ^ z

(2) & (w)(f(y, w) — l &w ^ y =>/(z, w) = 1)) =» (w)(g(z, w)

- 1 «* (a*)(w - 2* & g(y, x) = l))) & 60((z)/(2, y) = 1

& 2 ^ y => ( 3î£i) (z?í w & /(z, w) = 1 &!»^ J& /(w, y)

= 1)) => (w)(g(y, w) = 1 <=> w £ <£[*!(( 3m) ( 3») (g(w, x)

= 1 & ¿(c, z) = 1 &/(«, t,) = 1 &/(i>, y) = 1 & v * y))]))

k(3x)g(x,n) = 1].
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Contracting quantifiers,6 we have CdE^I-

To prove that CdEHI we argue similarly, using instead of (1):

n E Cd<=* (V simple ordering /) (g) {[(h) (h is a nonincreasing/-chain

=> (3x)h(x) = h(x + 1) & • • • (as in (1)) • • • & (y)(y is a

(3) limit element of / =>■ {w\ g(y, w) =  l}   = (p[ • • • as in

(1) • • • ]) & (3x)(y)g(x,y) * l] => (3*)g(a-,n) - l}.

Note that the clause "( 3x) (y)g(x, y) ^ 1" says that / reaches the least

ordinal for which there is no notation in D !

Bringing out the quantifier (h) (which comes out, of course, as an

existential quantifier), and contracting quantifiers, we have CdEO\-

Thus CnGSà^nJ. Q.E.D.

Theorem 2. //, in the definition of D, we allow (p to be a XlfMLl
operation, it remains the case that CoE^l^Hl-

Proof. In the proof that CdE^I we note that the quantifier (h)

can be confined to the clause ((x)f(h(x+l), h(x)) = l=$(3x)h(x)

= h(x-\-l))- Then the function quantifiers in d¡ can be moved ahead

of the number quantifiers by the devices of [Ki ] and finally brought

out. Although (p occurs in a biconditional, the quantifiers can be

brought out in the order 3V by splitting the biconditional into a

pair of conditionals and using the 3V form of (j¡ when d> occurs in the

consequent and the \t 3 form when <p occurs in the antecedent. That

is, (w)(g(y, w) = lt=>wE(b[ • • • ]) becomes

iw)[igiy,w) - l*-*(3a)GS)(*0&((i)(3X)*,^g(y,«0 = 1)],

where wE4>[ • • • ]<^(3a)Q3)ipx<^¡'(o)(3k)i¡/2. Hence the original ex-

pression becomes

(w)(3a)(38)(ß)(\)[(g(y, w) = l=**x)& (*, =* g(y, w) - 1)].

Bringing out the function quantifiers and contracting we have 3V in

front of the whole formula (except for the (h) which we confined).

Now we bring out (h) and contract again, and we have CdE^I- The

argument is similar for CdEH-1- Note that, since we have to exploit

the fact that 0 can be written in both ways, we would not get a better

result by assuming that 0£2{ or (pEIi\ than we do by assuming that

(¡¡E^lCMll. Generalizing this argument, we also see that if (¡¡E^l^Iil,

n>2, then Cß£2^111^.

The sets ^>n- Suppose a set A is "one-function-quantifier" in a set

B, i.e., say * G-4 <=»(/)( ay) ( ■ ■ • B ■ ■ ■) (that the number quanti-

'Cf. [Ki],also [KR, p. 346].
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fiers can be reduced to one when function quantifiers are present is

shown in [Ki]). Since (3y)( - - • B • - • ) says that x belongs to a set

which is recursively enumerable in B, f, we can write this as x E A

*=*if)i:3y)Tf'Bigix), gix), y) for a suitable primitive recursive g. Thus

the set {x\ if)Í3y)T/-Bix, x, y)} is a complete one-function-quantifier

form in B, i.e., every set which is one-function-quantifier in B is recur-

sive in this set (and if A is EL} in B, A is even many-one reducible to

this set). This justifies calling the operation

B+*{x\if)i3y)T'-*ix, x,y)}

the complete one-function-quantifier jump operation (or, more simply,

the hyper-jump operation). We shall use D to iterate this operation

transfinitely many times. First we impose the following.

Further restrictions on <f>.

(1) If a is a limit number, Na must not contain any power of 2.

(2) There must exist recursive functions g, k such that if a is a

limit number and xENa, then gix) ENß for some limit number j8<a,

and8 {&(*)} provides an order preserving cofinal mapping (see be-

low) from UT<(3 Ny into U7<a Ny.

Let us write |*| =a for xENa. Then (2) means that

(i) if yE^y<ßNy then {kix)}(y) is defined and {kix)} iy)ENa

iinto property) ;

(ii) if y, zEVy<f,Ny, then \y\ ̂  [z| «=>| {*(*)} 601 Û | {*(*)}(*)|
ior der-preserving property) ;

(iii) for each yEUy<a Ny, there is a zGU7<(j Ny such that |y|

á | {kix)} (z) | icofinal property).

Intuitively, the meaning of these restrictions is that it should be

possible to effectively distinguish notations for successor ordinals

from those for limit ordinals and to associate an order-preserving co-

final recursive sequence from UT</s Ny into UT«, Ny (for some effec-

tively specified ß) with each (notation for a) limit ordinal a. We allow

a = ß in restriction (2), because otherwise it would not be possible to

have "recursively regular" ordinals.7

We now define the set §„ (obtained by iterating the hyper-jump

operation through D) as follows:

(1) $i = 0.
(2) If nED, then $2»= {*| if)i3y)V-H«, *.?)}•
(3) If nED, n is not a power of 2, then

• {k(x)\ is the symbol for the ¿(*)th partial recursive function in the standard

enumeration.

7 Cf. [KR; P]. [P] also defines the system C in a way which makes it clear that

this system is of the form D.
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£„ = {2*3* I x E Sue» („) & y G Ukuooi At} .

[Note that if | «| is a limit ordinal, (3) insures that §m shall be recur-

sive in £>„ for each m in the appropriate "fundamental sequence"

(provided by {k(n)} (y) as y runs through the notations for ordinals

less than |g(«)|).]

We see that each $2B comes from ^„ by the hyper-jump operation.

And by an easy transfinite induction $„ is recursive in ¡Qm for

\n\ <|f»|.

Theorem 3. For each nED, the set £„£22^112.

Proof. It suffices to write

x E $n <=> ( a/) ( 3g) ( 3g') ih) [ ■ ■ • entire      matrix       of       (2) • • •

& iw)g'il, w)^l& (y)(z) (g(y, 2') = 1 =» (v)(g'(2°, v) = 1

<=> (a)(3y)Ta'p(v, v, y))) & (y)(z)(y is a limit element of

(4) / & g(y, z) = 1 => {w | g'(z, w) = 1} = {J(w, v) | g'({*(z)}

f», w) = 1 & (aa)(aè)(/(0, b) & a * b &: g(b, g(z)) = 1

&g(a,.) = l})&g'(W,s) = 1].

In (4) above "P" abbreviates "{v\g'(z, v) = l}."

Here again we have used a well-ordering of all the integers instead

of a segment of the second number class. We have used the mapping

*^{y\gix,y) = 1}

as our mapping a<->Na; and we have used the mapping

y*-*{*\f(y>*) = !}
as our mapping y<->¿p¡,. Writing out the Ta-P predicate in full and put-

ting g'iz, «0 = 1 and g'iz, w)t^\ for P(w) and P(w) whenever these

occur in the full form of the predicate Ta,piv, v, y), we see that the

argument of Theorem 2 applies here. So, once again we confine (Ä) to

the single clause in which it occurs, split the biconditional involving

Ta,p into a pair of conditionals, and then bring out the function

quantifiers in the desired 3\/ order. Thus ¡QnE2l- The proof that

$>n E Hi is exactly similar, writing

x E ¡Qn <=> if)ii)is'){[WC* is a nonincreasing/-chain => ( 3x)hix)

- h(x + 1)) & • . • as in (4) • • • & i3x)iy)gix, y) * l]

=*g'ix, x) = l}.

Finally, we note that the argument again generalizes to show that

if the operation
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B+*ia)iay)T«>Bix,x,y)

is replaced by an operation which leads (uniformly) from B to a set

which is in 2y"MI¿ form relative to B, n ^ 2, then the sets §„ will be

in the class S^nili.

Remark added February S, 1963. The method of this paper yields

an immediate proof that if B E 2^l<^Ill thenthehyperjumpof B also
E 22f~ML2. Namely, it suffices to define

n E hyperjump (5)

~ (3/)(3g)[(*)(/(*) = 1 V/O) = 0) & ix)igix) = 1 V gix) = 0)

& ix)ifix) = 1 o Bix)) & (*)(f(*) = 1

<=>(*)( 3y) ZM«, z,y))&g(«) = 1]

<=> (/)(«)[(*)(/*(*) = 1 V/(«) = 0) & (*)(«(*) = 1 V gix) = 0)

& ix)ifix) = 1 « £(*)) & (x)igix) = 1

^(A)(ay)r^(*,*,y)).=>.g(»)«l].

Splitting the biconditionals into pairs of conditionals and proceeding

with the quantifiers as in the text, we have the desired result, which

was proved by Addison and Kleene in A note on function quantifica-

tion, Proc. Amer. Math. Soc. 8 (1957), 1002-1006, using an argument

involving the operation A.
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