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1. Introduction. It is the purpose of this note to call attention to

the possibility of constructing £-adic examples which are related to

unsolved problems in classical diophantine approximation. The sig-

nificance of such examples rests on the principle that the theorems of

classical diophantine approximation can be modified to obtain />-adic

analogs. It should even be possible to prove that certain classical

methods "automatically" extend to the ¿>-adic case. We shall not

concern ourselves here with the exact nature of the analogy between

classical diophantine approximation and the £-adic generalizations.

We shall, however, assume that some precise form of this principle

can be found in a particular case where we have observed an analogy.

2. Diophantine approximation. We shall understand the term

"diophantine approximation" to refer to problems of the following

type. A function f(x, y) will be given whose domain is the set of pairs

of integers and whose range is the set of non-negative real numbers.

We shall consider inequalities of the form/(x, y) <c for all c>0. The

question asked will be: For which c are there infinitely many solu-

tions to/(x, y) <c in relatively prime integers x, y? The realm of classi-

cal diophantine approximation concerns itself with functions / which

can be thought of as functions of real variables; £-adic diophantine

approximation allows functions which involve computations in the

various ¿>-adic completions of the rationals, and computation of the

£-adic valuation on elements of that completion.2

In this note, we shall consider problems based on functions of the

form

(1) g(max(| x| , | y\ ))• | x| • | y\ • | x|2- | y\v \ x - y\6

where | | p denotes the £-adic valuation. The principle we are dis-

cussing indicates that these problems should be related to problems

in classical diophantine approximations involving

(2) g(max( | x | , | y \ )) • | y \ ■ \ ay - x \

Received by the editors October 20, 1962.
1 This example is a by-product of the author's Ph.D. thesis [l].

! The definitions of />-adic completions and valuations may be found in [5, §76]

or [3, p. 5],
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for algebraic a. The next section should give an indication of the

relationship between classical and p-adic problems.

3- g(z)=z', €>0. The case in which g(z)=z', e>0, is covered by

Roth's theorem. In the classical case, Roth's original theorem demon-

strates that

(3) (max( | x | , | y | ))'• | y | • | ay - x |   < c

will have only finitely many solutions in relatively prime integers for

all c>0. The p-adic analogs of Roth's theorem (which were proved

by others shortly after Roth's result became known) indicate that

the same conclusions hold for the p-adic generalizations of (3). (See

[3].) In particular, we have that

(4) (max(| x\ , \y\ ))'■ \ x\ • | y\ • | x|2- | y|3- \ x - y\6 < c

will have only finitely many solutions in relatively prime integers

for all values of c > 0.

4. g(z) = 1. If, instead, we take g(z) = 1 in the classical case, so that

we are concerned with inequalities of the form

(5) I y I • I ay - x |   < c,

then the continued fraction of a allows us to construct infinitely

many solutions to (5) with c= 1 if a is irrational. If a were rational,

it is easy to see that (5) must have only finitely many solutions in

relatively prime integers for each c. If a is of degree 2 over the ra-

tionals, then a will have a periodic continued fraction, a fact which

allows us to prove that there will be a value of c for which (5) has

only finitely many solutions. If the degree of ct is greater than 2, we

do not know if there is any value of c such that (5) has only finitely

many solutions. (See [3, p. vi].)

The particular p-adic analog which we have described is easier to

deal with than its classical counterpart. We can easily construct a

sequence of pairs (x„, yn) such that

(6) I x„ I • I y„ I • I xn |2- I y„ |3- | x„ — yn \& = 5-B.

Theorem 1. A sequence of pairs (x„, y„) satisfying (6) is formed by

setting x„ = 22'6"   and y„ = — 1.

Proof. The choices we have made for x„ and y„ demonstrate that

[ 3C„ I - j 3C„ I a = 1 and \yn\ • \yn\ 3=1. Hence, we must show that

\xn—y„| 5 = 5_n. Translating this into the language of elementary

number theory, we find that we must show that
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22-6n * m _ 1  (mod s«)

and

22-6""1   fé - 1 (mod5»+1).

These results in turn follow from the fact that 2 is a primitive root

modulo 5n for all n. This may be verified easily by using the following

result from elementary number theory.

Lemma. If r is relatively prime to the odd prime p, and if r is a prim-

itive root modulo p2, then r is a primitive root modulo pn for all n.

Remark. This lemma is a consequence of the binomial theorem ;

a proof may be found in [2, Vol. 1, Theorem 4-6, p. 52] or [4, p. 108].

Although we know of no algebraic number a for which (5) has

infinitely many solutions for all c, we have constructed an analogous

£-adic problem for which this is the case. This demonstrates that

any proof that all algebraic numbers have continued fractions with

bounded partial quotients would have to be such that it not admit of

extension to the obvious £-adic analog. Considering the methods of

diophantine approximation, this seems to be fair evidence for assum-

ing that this conjecture is false. While this does not bring us much

nearer to final resolution of this problem, it does provide some

evidence that algebraic numbers might exist for which (5) has in-

finitely many solutions for all c>0.

5- g(z) = log z. The sequence of pairs (x„, yn) which we constructed

above can be used to prove a stronger result than that for which it

was introduced.

Theorem 2. There is a constant c>0 such that

(7) log(max(|x| , | y | ))• | x\ ■ | y | • | x\2- | y|8- | x - y |6 < c

has infinitely many solutions in relatively prime integers.

Proof. Direct computation with the sequence (xn, y„) constructed

in Theorem 1 shows that this holds for c> (2/5) log 2.

Remark. A smaller value of c may be obtained by the following

argument.

First observe that 2 and 3 are both primitive roots of 5" for all n.

Also observe that, if x= ±2° and y= ±3b, then (7) reduces to

(8) log(max(| x| , | y\ ))■ \ x - y|6 < c.

Now let
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An = \ ±2°; 0 -g a g 2-5»-1 —1
i log 6 jlog 1

and
Í log 2        )

?» =  \ ±3h: 0<ig 2• 5"-1 —=-1- 1 \.
\ log 6        J

It is clear that the elements of An are distinct modulo 5", and also

the elements of Bn are distinct modulo 5". Since An\JBn contains a

number of elements greater than 4-5"-1, all of which are relatively

prime to 5, this set can not consist of elements distinct modulo 5".

Select xnEAn, ynEBn such that

xn—yn (mod 5").

If c> (2/5)(log 2)(log 3)/log 6 is given, then we will have

log(max(|x„|, |y„|))-|x„ -y„|6 < c

lor all «>«o(c).
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