ON COMPACT COMPLEX COSET SPACES OF REDUCTIVE LIE GROUPS

JUN-ICHI HANO1

1. The statement of theorems. Let G be a connected complex Lie group and let B be a closed complex Lie subgroup in G. The left coset space G/B is a complex manifold, which will be called a complex coset space. We denote by B_0 the identity connected component of B and U the normalizer of B_0 . The canonical projection p of G/B onto G/U defines a holomorphic fibre bundle, and the complex Lie group U/B_0 acts on G/B as the structure group. We denote by (G/B, p, G/U) this holomorphic fibre bundle.

Suppose that the complex coset space G/B is compact. Then, by a recent result of Borel-Remmert [1, Satz 7'], it turns out that the base space G/U is a Kaehler C-space, that is, a simply connected compact complex coset space admitting a Kaehler metric, such that the group of isometries is transitive on it. Since G/U is simply connected, U must be connected. The complex coset space of the connected complex Lie group U/B_0 by the discrete subgroup B/B_0 can be regarded as the standard fibre of (G/B, p, G/U). Making use of this result of Borel-Remmert we derive the following.

THEOREM 1. Let G/B be a compact connected complex coset space of a connected complex Lie group G by a closed complex Lie subgroup B. Let U be the normalizer of the identity connected component B_0 of B. If G is a reductive complex Lie group, then the fibre of the holomorphic fibre bundle (G/B, p, G/U) is a compact connected complex coset space of a reductive complex Lie group U/B_0 by the discrete subgroup B/B_0 .

If a compact coset space of a connected reductive real Lie group G' by a closed Lie subgroup B' admits an invariant complex structure, the complex manifold G'/B' can be written as a complex coset space of a connected complex reductive Lie group. Hence, this is a case where we can apply the above theorem. This gives a generalization of a theorem proved by Matsushima [2, Theorem 2].

Let M be a connected compact complex manifold. By a theorem of Bochner-Montgomery, the group of all holomorphic homeomorphisms of M onto itself is a complex Lie group acting on M as a holomorphic transformation group. We denote by $A_0(M)$ the identity

Presented to the Society January 27, 1963; received by the editors November 20, 1962.

¹ Partial support by National Science Foundation Grant No. GP-89.

connected component of this complex Lie group. If the group $A_0(M)$ acts on M transitively, M can be expressed as a complex coset space of a connected complex Lie group $A_0(M)$.

THEOREM 2. Let M be a connected compact coset space, and let $A_0(M)$ be the identity connected component of the complex Lie group of holomorphic homeomorphisms of M onto itself. If a connected reductive (real or complex) Lie subgroup in $A_0(M)$ is transitive on M, then $A_0(M)$ is a complex reductive Lie group.

When M is a C-space, that is, a simply connected compact complex coset space, the fact that $A_0(M)$ is a reductive complex Lie group, more strongly that, it is locally a direct product of a complex vector group and a connected semi-simple complex Lie group, is proved by Wang [3, Theorem III].

2. The proof of Theorem 1. We shall prove Theorem 1 in a slightly more general form, which is required in the proof of Theorem 2. Using the same notations as in Theorem 1, let X be a closed complex subgroup in G such that $B \subset X \subset U$. We shall show that if the complex coset space G/X is a Kaehler C-space, then the factor group X/B_0 is reductive. By the theorem of Borel-Remmert mentioned above, the subgroup U satisfies the hypothesis for the group X.

Wang's structure theorem asserts that a complex coset space of a connected complex Lie group G by a closed complex Lie subgroup X is a Kaehler C-space if and only if X is connected and contains a maximal connected solvable Lie subgroup in G [3]. Therefore, X is connected and contains the identity connected component Z of the center of G. We denote by g the Lie algebra of G and by u, x, b, and z the subalgebras in g corresponding to the complex Lie subgroups U, X, B_0 , and Z, respectively. We always understand that the base field of those Lie algebras is the field of complex numbers. As G is reductive, g is the direct sum of the center z and the maximal semisimple ideal g₁. We review here a proposition by Wang [3, Proposition 5.2 about the subalgebra x corresponding to the isotropy subgroup X of the Kaehler C-space G/X. We can choose a Cartan subalgebra h of g_1 which is contained in x, an ordering of the set of roots with respect to h, and a subset Δ' consisting of some positive roots, so that a root vector X_{α} belonging to a root α is contained in x if and only if either α is positive or $-\alpha$ is in Δ' . Let Δ'' be the set of the positive roots not contained in Δ' . Then, we have

$$x = z + h + \sum_{\pm \alpha \in \Delta'} \{X_{\alpha}\} + \sum_{\beta \in \Delta''} \{X_{\beta}\}.$$

The subspace n spanned by the X_{β} , $\beta \in \Delta''$, is a nilpotent ideal in x, and a factor algebra of x by an ideal containing n is always a reductive Lie algebra.

Thus, in order to complete the proof of the statement, it suffices to show that $b \supset n$. Since b is an ideal in x, x is stable by ad H, $H \in h$. This implies that b is spanned by $b \cap (z+h)$ and some root vectors. First, we shall show that for a root α in Δ' , X_{α} belongs to b if and only if $X_{-\alpha}$ belongs to b. Take a root vector X_{α} such that $X_{\alpha} \in b$ and that either α or $-\alpha$ belongs to Δ' . Then, $[X_{-\alpha}, X_{\alpha}] \in b \cap h$ and $[[X_{-\alpha}, X_{\alpha}], X_{-\alpha}] = \alpha([X_{-\alpha}, X_{\alpha}]) \cdot X_{-\alpha} \in b$. As is known in the theory of a semi-simple complex Lie algebra, the complex number $\alpha([X_{-\alpha}, X_{\alpha}])$ never vanishes, which implies that $X_{-\alpha} \in b$. Let us denote by $ad_b H$ and $ad_x H$ the restrictions of ad H to the subspaces b and $ad_x H$ the restrictions of ad H to the subspaces ad A and that ad A is an ad A the set of the roots ad A such that ad A and that ad A is shown above it follows that for any ad A is shown above it follows that for any ad A is satisfied and ad A is satisfied as ad A.

trace
$$(\operatorname{ad}_x H)$$
 - trace $(\operatorname{ad}_b H) = \sum_{\alpha \in \overline{\Delta}} \alpha(H)$.

Since the coset space X/B of X/B_0 by the discrete subgroup B/B_0 is compact, the factor group X/B_0 is a unimodular Lie group. Therefore, the trace of the linear transformation ad H, $H \subset h$, must vanish, and accordingly the sum of all roots in $\bar{\Delta}$ is equal to zero. On the other hand, as every root in $\bar{\Delta}$ is positive, we see that the set $\bar{\Delta}$ is empty. This implies that b contains n, completing the proof.

3. The proof of Theorem 2. We denote by \overline{G} , \overline{B} the group $A_0(M)$, its isotropy subgroup at a point in M, respectively. Let \overline{U} be the normalizer of the identity component \overline{B}_0 of \overline{B} . In virtue of the theorem of Borel-Remmert mentioned above, $\overline{G}/\overline{U}$ is a Kaehler C-space and \overline{U} is connected. We denote by \overline{p} the canonical projection of $\overline{G}/\overline{B}$ onto $\overline{G}/\overline{U}$.

Let G be the least connected complex Lie subgroup in \overline{G} containing the given connected reductive Lie subgroup which is transitive on $\overline{G}/\overline{B}$. Obviously, G is also reductive and is transitive on $\overline{G}/\overline{B}$. The isotropy subgroup B in G is $G \cap \overline{B}$. The group G acts on $\overline{G}/\overline{U}$ transitively and its isotropy subgroup X is equal to $G \cap \overline{U}$. Since \overline{U} is the normalizer of \overline{B}_0 , X is contained in the normalizer U in G of the identity connected component B_0 of B. The complex coset space G/X, which coincides with $\overline{G}/\overline{U}$, is a Kaehler C-space. By Theorem 1, the factor group X/B_0 is a connected reductive complex Lie group. The fibre $\overline{U}/\overline{B}$ of the holomorphic fibre bundle $(\overline{G}/\overline{B}, p, \overline{G}/\overline{U})$ is equal to X/B; indeed, we have a holomorphic homeomorphism of X/B onto

 $\overline{U}/\overline{B}$, which is induced from the injection of X into \overline{U} . Moreover, we see that the homomorphism of X/B_0 into $\overline{U}/\overline{B}_0$ induced from the injection of X into \overline{U} is locally isomorphic and onto. This follows from the fact that the dimensions of X/B_0 and $\overline{U}/\overline{B}_0$ are equal to those of X/B and $\overline{U}/\overline{B}$, respectively. Thus, $\overline{U}/\overline{B}_0$ is a reductive complex Lie group.

Next, we shall show that the dimension of the center of \overline{G} is larger than or equal to that of the center of $\overline{U}/\overline{B}_0$. We regard $\overline{U}/\overline{B}_0$ as the structure group of the fibre bundle $(\overline{G}/\overline{B}, \ \overline{b}, \ \overline{G}/\overline{U})$. Then, the associated principal bundle is $(\overline{G}/\overline{B}_0, \overline{q}, \overline{G}/\overline{U})$, where \overline{q} denotes the canonical projection from $\overline{G}/\overline{B}_0$ onto $\overline{G}/\overline{U}$. Let \tilde{u} be a coset in $\overline{U}/\overline{B}_0$, and let u be a representative of the coset \tilde{u} . The holomorphic homeomorphism defined by $g \cdot \overline{B}_0 \rightarrow gu \cdot \overline{B}_0$, $g \in \overline{G}$, is determined by the coset \tilde{u} , and is the right translation of the principal bundle $\overline{G}/\overline{B}_0$ corresponding to the element \tilde{u} of the structure group. Evidently, the right translation commutes with the mapping $g \cdot \overline{B}_0 \rightarrow xg \cdot \overline{B}_0$, $g \in \overline{G}$, assigned to an element x in \overline{G} . We denote by Z the identity connected component of the center of $\overline{U}/\overline{B}_0$, and by n the complex dimension of Z. The complex Lie group Z, being a Lie subgroup in the structure group, acts on $\overline{G}/\overline{B}_0$ as a holomorphic transformation group. Let X_1, \dots, X_n be linearly independent holomorphic vector fields induced by one-parameter subgroups in Z. Then, at each point, they are linearly independent and form a base of the complex tangent space of the orbit of Z through the point. Moreover, each X_i is invariant by \overline{G} .

Denoting by s the canonical projection of $\overline{G}/\overline{B}_0$ onto $\overline{G}/\overline{B}$, we obtain a holomorphic principal fibre bundle $(\overline{G}/\overline{B}_0, s, \overline{G}/\overline{B})$ whose structure group is the discrete subgroup $\overline{B}/\overline{B}_0$ in $\overline{U}/\overline{B}_0$. Since Z is in the center of $\overline{U}/\overline{B}_0$, each of the holomorphic vector fields X_1, \dots, X_n is invariant by the action of the structure group $\overline{B}/\overline{B}_0$, and hence they are projectable. Let Y_1, \dots, Y_n be their image by the projection s. As s is a local homeomorphism, Y_1, \dots, Y_n are linearly independent at each point. It is also obvious that each Y_i is invariant by \overline{G} . The complex manifold $\overline{G}/\overline{B}$ being compact, the holomorphic vector fields Y_1, \dots, Y_n generate a connected complex Lie subgroup \overline{Z} of dimension n in $A_0(M)$. As $A_0(M) = \overline{G}$, \overline{Z} is in the center of \overline{G} and evidently in the radical \overline{R} of \overline{G} .

In order to complete the proof, it suffices to show that the radical \overline{R} of \overline{G} is contained in the center of \overline{G} . Since $\overline{G}/\overline{U}$ is a Kaehler C-space, \overline{R} is contained in \overline{U} , and so is \overline{Z} . First, we shall see that the image of $\overline{Z} \cdot \overline{B}$ under the canonical homomorphism $\tau \colon \overline{U} \to \overline{U}/\overline{B}_0$ contains Z. For this purpose, we recall how the group \overline{Z} is constructed. Take an

element z in $\tau^{-1}(Z)$. To the right translation $f_{\tau(s)}: g \cdot \overline{B}_0 \rightarrow gz \cdot \overline{B}_0, g \in \overline{G}$, of the principal bundle $\overline{G}/\overline{B}_0$, there corresponds a holomorphic homeomorphism $g_{\tau(z)}$ of $\overline{G}/\overline{B}$ onto itself, such that $s \cdot f_{\tau(z)} = g_{\tau(z)} \cdot s$. Hence, $g_{\tau(z)}$ is the mapping $g \cdot \overline{B} \rightarrow gz \cdot \overline{B}$, $g \in \overline{G}$. On the other hand, $g_{\tau(z)}$ is realized by a mapping $g \cdot \overline{B} \rightarrow z'g \cdot \overline{B}$, $g \in \overline{G}$, for a certain element z' in \overline{Z} . Therefore, we have $z \in z' \cdot \overline{B}$, and $Z \subset \tau(\overline{Z} \cdot \overline{B})$. Since the image of \overline{R} under τ is in Z, we have $\overline{R} \subset \overline{Z} \cdot \overline{B}$. It follows that the orbit of \overline{R} through a point is equal to the orbit of \overline{Z} ; in fact, $\overline{R} \cdot g \cdot \overline{B} = g \cdot \overline{R} \cdot \overline{B}$ $=g\cdot\overline{Z}\cdot\overline{B}$ for any $g\in\overline{G}$. Let Y be a holomorphic vector field induced by a one-parameter subgroup in \overline{R} . Then, Y is expressed as a linear combination of Y_1, \dots, Y_n whose coefficients are holomorphic functions on $\overline{G}/\overline{B}$. Since $\overline{G}/\overline{B}$ is compact, all the coefficients must be constant. Thus, we have seen that the radical \overline{R} coincides with the central subgroup \overline{Z} , and accordingly the dimension of the center of $\overline{U}/\overline{B}_0$ is equal to that of the center in \overline{G} . From these facts, the assertion of Theorem 2 follows immediately.

REMARK. As an immediate implication of the above theorem, we see that if M is a Kaehler C-space, then $A_0(M)$ is semi-simple. This is a corollary of a theorem obtained by Matsushima (see Nagoya Math. J. 11). Indeed, M is a complex coset space of a connected complex semi-simple Lie group G by a closed connected complex Lie subgroup B, whose normalizer coincides with itself [3, (5.2)]. We may assume that G is a subgroup of $A_0(M)$. From what we have shown in the above proof, it follows that $\overline{U}/\overline{B_0}$ reduces to the identity and accordingly so does the identity connected component of the center of the complex reductive Lie group $A_0(M)$. Thus, $A_0(M)$ is semi-simple.

BIBLIOGRAPHY

- 1. A. Borel and R. Remmert, Über kompact homogene Kählersche Mannigfaltig-keiten, Math. Ann. 145 (1962), 429-439.
- 2. Y. Matsushima, Sur certaines variétés homogènes complexes, Nagoya Math. J. 18 (1961), 1-12.
- 3. H. C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76 (1954), 1-32.

WASHINGTON UNIVERSITY