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1. The statement of theorems. Let G be a connected complex Lie

group and let B be a closed complex Lie subgroup in G. The left coset

space G/B is a complex manifold, which will be called a complex coset

space. We denote by Bo the identity connected component of B and

U the normalizer of Bo- The canonical projection p of G/B onto G/ U

defines a holomorphic fibre bundle, and the complex Lie group U/Bo

acts on G/B as the structure group. We denote by (G/B, p, G/U)

this holomorphic fibre bundle.

Suppose that the complex coset space G/B is compact. Then, by

a recent result of Borel-Remmert [l, Satz 7'], it turns out that the

base space G/U is a Kaehler C-space, that is, a simply connected

compact complex coset space admitting a Kaehler metric, such that

the group of isometries is transitive on it. Since G/ U is simply con-

nected, U must be connected. The complex coset space of the con-

nected complex Lie group U/B0 by the discrete subgroup B/B0 can

be regarded as the standard fibre of (G/B, p, G/U). Making use of

this result of Borel-Remmert we derive the following.

Theorem 1. Let G/B be a compact connected complex coset space of

a connected complex Lie group G by a closed complex Lie subgroup B.

Let U be the normalizer of the identity connected component Bo of B. If

G is a reductive complex Lie group, then the fibre of the holomorphic fibre

bundle (G/B, p, G/U) is a compact connected complex coset space of a

reductive complex Lie group U/B0 by the discrete subgroup B/Bo-

ll a compact coset space of a connected reductive real Lie group

G' by a closed Lie subgroup B' admits an invariant complex struc-

ture, the complex manifold G'/B' can be written as a complex coset

space of a connected complex reductive Lie group. Hence, this is a

case where we can apply the above theorem. This gives a generaliza-

tion of a theorem proved by Matsushima [2, Theorem 2].

Let M be a connected compact complex manifold. By a theorem of

Bochner-Montgomery, the group of all holomorphic homeomor-

phisms of M onto itself is a complex Lie group acting on M as a

holomorphic transformation group. We denote by Aa(M) the identity
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connected component of this complex Lie group. If the group AoiM)

acts on M transitively, M can be expressed as a complex coset space

of a connected complex Lie group AoiM).

Theorem 2. Let M be a connected compact coset space, and let AoiM)

be the identity connected component of the complex Lie group of holo-

morphic homeomorphisms of M onto itself. If a connected reductive ireal

or complex) Lie subgroup in AoiM) is transitive on M, then AoiM)

is a complex reductive Lie group.

When M is a C-space, that is, a simply connected compact complex

coset space, the fact that AoiM) is a reductive complex Lie group,

more strongly that, it is locally a direct product of a complex vector

group and a connected semi-simple complex Lie group, is proved by

Wang [3, Theorem III].

2. The proof of Theorem 1. We shall prove Theorem 1 in a slightly

more general form, which is required in the proof of Theorem 2.

Using the same notations as in Theorem 1, let X be a closed complex

subgroup in G such that BEX EU. We shall show that if the complex

coset space G/X is a Kaehler C-space, then the factor group X/B0

is reductive. By the theorem of Borel-Remmert mentioned above,

the subgroup U satisfies the hypothesis for the group X.

Wang's structure theorem asserts that a complex coset space of a

connected complex Lie group G by a closed complex Lie subgroup X

is a Kaehler C-space if and only if X is connected and contains a

maximal connected solvable Lie subgroup in G [3]. Therefore, X is

connected and contains the identity connected component Z oí the

center of G. We denote by g the Lie algebra of G and by u, x, b, and

z the subalgebras in g corresponding to the complex Lie subgroups

U, X, Bo, and Z, respectively. We always understand that the base

field of those Lie algebras is the field of complex numbers. As G is

reductive, g is the direct sum of the center z and the maximal semi-

simple ideal g\. We review here a proposition by Wang [3, Proposition

5.2] about the subalgebra x corresponding to the isotropy subgroup

X of the Kaehler C-space G/X. We can choose a Cartan subalgebra h

of gi which is contained in x, an ordering of the set of roots with re-

spect to h, and a subset A' consisting of some positive roots, so that

a root vector Xa belonging to a root a is contained in x if and only if

either a is positive or —a is in A'. Let A" be the set of the positive

roots not contained in A'. Then, we have

x = z + h+   H  {Xa} +  H {Xß}.
±«eA' 06A"
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The subspace n spanned by the Xß, ßEa", is a nilpotent ideal in x,

and a factor algebra of x by an ideal containing « is always a reductive

Lie algebra.

Thus, in order to complete the proof of the statement, it suffices to

show that ¿O«- Since b is an ideal in x, x is stable by ad H, HEh.

This implies that b is spanned by bf\(z+h) and some root vectors.

First, we shall show that for a root a in A', Xa belongs to b il and

only if A_a belongs to b. Take a root vector Xa such that XaEb and

that either a or —a belongs to A'. Then, [X-a, Xa]Ebf\h and

[[A_„, Xa], X-a] =a([X-a, Xa]) -X-aEb. As is known in the theory

of a semi-simple complex Lie algebra, the complex number

a([X-a, Xa]) never vanishes, which implies that X-aEb. Let us de-

note by adj H and ads H the restrictions of ad H to the subspaces b

and x, respectively, and by Ä the set of the roots a such that a G A"

and that XaEb. Then, from the fact shown above it follows that for

any HEh,

trace (ad* H) — trace (ad¡, H) = Z «(#)•
•6A

Since the coset space X/B of X/Bo by the discrete subgroup B/B0 is

compact, the factor group X/Bo is a unimodular Lie group. Therefore,

the trace of the linear transformation ad H, HEh, must vanish, and

accordingly the sum of all roots in Ä is equal to zero. On the other

hand, as every root in Ä is positive, we see that the set Ä is empty.

This implies that b contains n, completing the proof.

3. The proof of Theorem 2. We denote by G, B the group AoiM),
its isotropy subgroup at a point in M, respectively. Let U be the

normalizer of the identity component Bo of B. In virtue of the theo-

rem of Borel-Remmert mentioned above, G/U is a Kaehler C-space

and TJ is connected. We denote by p the canonical projection of

G/B onto G/V.
Let G be the least connected complex Lie subgroup in G containing

the given connected reductive Lie subgroup which is transitive on

G/B. Obviously, G is also reductive and is transitive on G/B. The

isotropy subgroup B in G is G(~\B. The group G acts on G/U transi-

tively and its isotropy subgroup X is equal to GH U. Since U is the

normalizer of B0, X is contained in the normalizer U in G of the iden-

tity connected component B0 of B. The complex coset space G/X,

which coincides with G/V, is a Kaehler C-space. By Theorem 1, the

factor group X/Bo is a connected reductive complex Lie group. The

fibre TJ/B of the holomorphic fibre bundle iG/B, p, G/U) is equal to

X/B; indeed, we have a holomorphic homeomorphism of X/B onto
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V/B, which is induced from the injection of X into 77. Moreover,

we see that the homomorphism of X/B0 into U/Bo induced from the

injection of X into U is locally isomorphic and onto. This follows from

the fact that the dimensions of X/Bo and U/Bo are equal to those of

X/B and U/B, respectively. Thus, U/Bo is a reductive complex Lie

group.

Next, we shall show that the dimension of the center of G is larger

than or equal to that of the center of U/Bo. We regard U/Bo as the

structure group of the fibre bundle iG/B, p, G/U). Then, the associ-

ated principal bundle is iG/Bo, q, G/U), where g denotes the canonical

projection from G/Bo onto G/U. Let ü be a coset in U/Bo, and let

w be a representative of the coset «. The holomorphic homeomor-

phism defined by g■ Bo—*gu• Bo, gEG, is determined by the coset «,

and is the right translation of the principal bundle G/Bo correspond-

ing to the element ü oí the structure group. Evidently, the right

translation commutes with the mapping g- Bo-*xg-Bo, gEG, assigned

to an element x in G. We denote by Z the identity connected com-

ponent of the center of U/Bo, and by n the complex dimension of Z.

The complex Lie group Z, being a Lie subgroup in the structure

group, acts on G/Bo as a holomorphic transformation group. Let

Xx, • • • , X„ be linearly independent holomorphic vector fields in-

duced by one-parameter subgroups in Z. Then, at each point, they

are linearly independent and form a base of the complex tangent

space of the orbit of Z through the point. Moreover, each Xi is

invariant by G.

Denoting by s the canonical projection of G/.B0 onto G/B, we ob-

tain a holomorphic principal fibre bundle iG/Bo, s, G/B) whose struc-

ture group is the discrete subgroup B/Bo in U/Bo- Since Z is in the

center of U/Bo, each of the holomorphic vector fields Xi, • ■ • , Xn

is invariant by the action of the structure group B/Bo, and hence

they are projectable. Let Y\, • • • , Yn be their image by the projec-

tion 5. As 5 is a local homeomorphism, Yi, ■ • • , Yn are linearly inde-

pendent at each point. It is also obvious that each F,- is invariant by

G. The complex manifold G/B being compact, the holomorphic vec-

tor fields Fi, • • • , F» generate a connected complex Lie subgroup Z

of dimension n in AoiM). As AoiM) = G, Z is in the center of G and

evidently in the radical R of G.

In order to complete the proof, it suffices to show that the radical

R oí G is contained in the center of G. Since G/U is a Kaehler C-space,

R is contained in U, and so is Z. First, we shall see that the image of

Z-B under the canonical homomorphism t: U-*U/Bo contains Z.

For this purpose, we recall how the group Z is constructed. Take an
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element z in T~liZ). To the right translation/,■(,>: g-B0—>gz-Bo, gEG,

of the principal bundle G/Bo, there corresponds a holomorphic homeo-

morphism g^Z) of G/B onto itself, such that s-fT^) = gT(t)-s. Hence,

gT(,) is the mapping g-B—>gz-B, gEG. On the other hand, gT(») is

realized by a mapping g-B-*z'g-B, gEG, lor a certain element z' in

Z. Therefore, we have zEz'-B, and ZO(Z-JS). Since the image of

R under t is in Z, we have REZ-B. It follows that the orbit of R

through a point is equal to the orbit of Z; in fact, R-g-B = g-R-B

= g-Z-B for any gEG. Let F be a holomorphic vector field induced

by a one-parameter subgroup in R. Then, Y is expressed as a linear

combination of Fi, • • • , F„ whose coefficients are holomorphic func-

tions on G/B. Since G/B is compact, all the coefficients must be con-

stant. Thus, we have seen that the radical R coincides with the cen-

tral subgroup Z, and accordingly the dimension of the center of

V/Bo is equal to that of the center in G. From these facts, the asser-

tion of Theorem 2 follows immediately.

Remark. As an immediate implication of the above theorem, we see

that if if is a Kaehler C-space, then AoiM) is semi-simple. This is a

corollary of a theorem obtained by Matsushima (see Nagoya Math.

J. 11). Indeed, M is a complex coset space of a connected complex

semi-simple Lie group G by a closed connected complex Lie subgroup

B, whose normalizer coincides with itself [3, (5.2)]. We may assume

that G is a subgroup of AoiM). From what we have shown in the

above proof, it follows that U/Bo reduces to the identity and ac-

cordingly so does the identity connected component of the center of

the complex reductive Lie group AoiM). Thus, AoiM) is semi-simple.
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