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I. Introduction. The principal object of this paper is to establish

a result (Theorem 1) on Lindelöfian meromorphic functions which

has as an immediate consequence the known [4, p. 442] relation Ohb

EOl in the classification theory of Riemann surfaces. In fact, Theo-

rem 1 emerged out of an attempt to obtain a proof, presumably sim-

pler and more direct than the known (cf. [4, p. 442] and [6, p. 105]),

of this inclusion.

II. Preliminaries. In this section we provide some needed back-

ground material. Details and proofs of propositions concerning

Lindelöfian maps can be found in [4, pp. 424-430]. A proof of propo-

sition 4 can be found in [l, pp. 210-211],

Let W and R be Riemann surfaces and /: W—*R be a (complex)

analytic map. / is said to be Lindelöfian if it is of bounded character-

istic, (see [4]). The following proposition is implicit in [4].

Proposition 1. There is no nonconstant Lindelöfian map with do-

main a parabolic Riemann surface.

Henceforth W stands for a hyperbolic Riemann surface and all

analytic maps to be considered will be nonconstant. For any hyper-

bolic surface F, g¿?(-, q) denotes the Green's function of F with pole at

q. The following criterion [4] holds for Lindelöfian maps.

Proposition 2. An analytic map f: W—>R is Lindelöfian if and

only if, for every rER and qEW with fiq)?£r,

(1) Gif, q, r) =   H nip,f)gwip, «)< »,
/(P)=r

where nip,f) is the multiplicity of f at p.

A Lindelöfian meromorphic function is a Lindelöfian map with

ranges the extended plane. Hereafter, we shall denote this class of

functions by L. For this class of functions the following characteriza-

tion [4; 7; 8] holds.
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Proposition 3. A meromorphic function f on Wis in L if and only if,

forqEW,

(2) log | fig) |   = Gif, q, co) - Gif, q, 0) + P(q) - P'iq)

where P and P' are nonnegative harmonic functions on W.

It is immediate from Propositions 2 and 3 that a meromorphic /

on W is in L if and only if, for every complex number a and qEW,

(2a)    log | f(q) -a\   = G(J, q, ») - Gif, q, a) + Pa(q) - P¿ (q),

where P„ and Pá are nonnegative harmonic functions on W. Further,

it is clear from Proposition 3 that a meromorphic function on the

unit disc is in L if and only if it is of bounded type (see [5, p. 188]).

We shall conclude this section by stating some definitions and a

result due to Parreau. For any Riemann surface F let <?(F) denote

the class of nonnegative harmonic functions on F. A function h in

(P(F) is said to be quasi-bounded if it is the limit of a nondecreasing

sequence of bounded members of <P(F). s in (?(F) is said to be singular

if the only bounded member of <P(F) majorized by s is zero. From

these definitions it follows that the only quasi-bounded function

majorized by a singular function is zero. Also, the following decom-

position theorem holds.

Proposition 4. Any h in <P(F) can be written in a unique way in the

form

(3) h = hB + hs,

where ha is quasi-bounded and hs is singular. Further, hs

= limn^.0O G.H.M. min (h, n) where G.H.M. stands for "the greatest

harmonic minorant of."

Note, hß in (3) is called the quasi-bounded part of h and hs the

singular part.

III. Main result. We shall now state

Theorem 1. Let fEL on W. Then there exists at most one complex

number a such that, in (2a), the difference between the quasi-bounded

parts of Pa and Pa' is a constant.

The proof of this theorem is by uniformization. Let (U, it) be a

universal cover of W, U being realized as the unit disc of the complex

plane. Let 3 be the group of conformai cover transformations of U

relative to t. For any map <p with domain W let 4>* = d> o w be the

lifting to U.
We shall now establish the following simple lemmas.



1964] LINDELÖFIAN MEROMORPHIC FUNCTIONS 111

Lemma l.Ifhin(?iU)is automorphic relative to 3, then so is its quasi-

bounded part hs.

Proof. By Proposition 4, hB = hmn-Khn, A» = G.H.M. min (&, «).

Hence it is enough to show that hn is automorphic relative to 3. Let

zEU, t£3. Then /¿„(rz) 5s/î(tz) =/z(z) and hn(rz)ún. Hence, by the

definition of G.H.M., Ä„(rz) i=A„(z). Since this holds for every zEU

and every t£3, a group, we obtain the reverse inequality, thus com-

pleting the proof.

Lemma 2. If h in (?(£/) is quasi-bounded and automorphic relative to

3, then the harmonic function hi, defined on W by

h'ip) - hiz),       ,($) = p,

is quasi-bounded.

Proof. By the proof of Lemma 1, h — lim„_M&„, where hn is

bounded, automorphic relative to 3, and increases with n. Hence

h' = lim„J.00 hn , where &„' is bounded and increases with n. The result

now follows by the definition of a quasi-bounded function.

Lemma 3. s in <PiW) is singular, if and only if s* is.

Proof. Suppose that s is singular. By Lemma 1, sg, the quasi-

bounded part of s* is automorphic relative to 3. Hence, by Lemma 2,

Sb' defined on W by

sB'ip) = sB(z),       x(z) = p,

is quasi-bounded on W, and is majorized by the singular s. So sg' and

hence sj is zero, that is, s* is singular.

We omit the easy proof of the converse.

Lemma 4. s in (P(U) is singular if and only if it has radial limit zero

almost everywhere, i.e., limr..i s(reil) =0 except for a set of t of Lebesgue

measure zero.

This result is known. For a proof, see, for instance, [2, p. 540].

For the proofs of the following three lemmas we refer to [5, pp.

214, 207, and 209],

Lemma 5. gwi^iz), q) = Giir, z, q).

Lemma 6. The sum of a convergent series of Green's functions of U

has radial limit zero almost everywhere.

Lemma 7. If d>EL on U, then limr,i 4>ireu) exists for almost all t,

and the set of these radial limits corresponding to a set of t of positive

Lebesgue measure contains more than two points.
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Proof of Theorem 1. Suppose the conclusion of the theorem is

false. Then there exist complex numbers ax, a2, ax?¿a2, such that, for

«-1.2,

log \f(p) -o,|   = Gif, p, ») - G(f, P, ai) + Ki + Siip) - s¡(p),

where s< and s¡ are singular members of (P(W) and the A< are con-

stants. It now follows, from Lemmas 3 and 5, that,

(4) log | f*(z) - ai |   =G(f*,z, oo) - Gif*, z, a,) + A,- + S((z) - 5/ (z),

i = 1,2,

where 5¿ and 5,? are singular members of (?(U). (4), together with

Proposition 3, shows that f*(z)—a, is Lindelöfian on U, and hence,

by Lemma 7, /* has radial limits almost everywhere. Also, (4), to-

gether with Lemmas 4 and 6, yields that these radial limits lie, for

almost all points of the unit circle, on both the circles,

| z — ai\   = eK<,       i = 1, 2.

Since ai?£a2, this is a contradiction to elementary geometry in view

of the second part of Lemma 7. Hence, the theorem is true.

Remark. There can be an exceptional a in Theorem 1. For instance,

for the identity map of the unit disc, 0 is exceptional. More generally,

quotients of functions of Seidel's class (U) (see [6, p. 32]) have zero

as exceptional value.

Let HB denote the class of bounded harmonic functions and Ohb

the class of Riemann surfaces which do not admit nonconstant mem-

bers of the class HB. Let 0L have a similar meaning. Then we have

Corollary 1. OhbEOl-

Proof. This is immediate from Proposition 1, Theorem 1 and the

definition of a quasi-bounded function.

Corollary 2. If there exists a Lindelbfian map f from W to a com-

pact Riemann surface R, then WEOhb-

Proof. Let g be a nonconstant meromorphic function on R so that

g assumes every value only a finite number of times. Since / is

Lindelöfian, this implies, in view of Proposition 2, that h = gofEL

on W. The result now follows from Corollary 1.

Remark. Actually it is proved in [4] that, in Corollary 2, "com-

pact" can be replaced by "parabolic." But we have been unable to

prove this stronger result by our methods.
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IV. The classes Ohd and 0¿. Let HD be the class of harmonic

functions with a finite Dirichlet integral on a Riemann surface and

AB the class of bounded analytic functions. Denote by V the class

of those members of L which are pole-free. It is known [4, p. 442]

that OlEOl'EOab- Making use of known examples we shall now

establish

Theorem 2. There is no inclusion relation between Ohd and Ol, nor

between Ohd and 0l>.

Proof. Ohd^Ol'. For, otherwise, OhdEOab and this is known to

be false [l, p. 264, Theorem 26H], Hence, it is enough to show that

Ol(X-Ohd- To do this we shall make use of the "ends" considered in

[3]. Consider a Riemann surface F with the following properties:

(a) the surface is parabolic,

(b) the complement of every compact subset of F has exactly one

component whose closure is not compact.

An "end" is a subregion of a surface of the above type whose com-

plement is compact. It is clear that any harmonic function, bounded

on the closure of an end fl with smooth boundary, must belong to the

class HD on fí.

Heins [4, p. 442] has established that there exists an end whose

closure admits a nonconstant bounded harmonic function but no sub-

end of which admits a nonconstant function of class L. This result,

together with the preceding remark, yields that Ol<X.Ohd, thus com-

pleting the proof.
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