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1. Introduction. A famous result of Levy's ([3]; see also [l, pp.

121 ff.]) is that for a Markov chain, the transition probability from

one state to another as a function of time ipikiO of §2) is either always

positive or always zero. Now the law of a given Markov chain will

induce a probability in function space over the unit time interval. If

the time scale of this given Markov chain is changed by a factor X,

the process remains Markovian, but with a different law. The proba-

bility induced in function space by this new law will be written P\.

In view of Levy's result, it is tempting to conjecture that all these

probabilities are equivalent. This conjecture is false. Here we con-

sider Markov chains with stable states, and show that these proba-

bilities are equivalent precisely on the set of sample functions which

are step functions. To rephrase this, if the time axis of a finite seg-

ment of sample function has been rescaled by an unknown amount,

this scale factor can be calculated with probability 1 if and only if

the function exhibits an infinite number of jumps.

2. The measure theory. Since we deal with many probabilities at

once, it is convenient to modify the usual construction of a Markov

chain. We follow [l] insofar as possible. Let 7 be a countable set in

the discrete topology, 7 = I\j{ oo } its one-point compactification, 8

any object not in 7, Q the set of all functions « from the non-negative

rationals R* to 7, in the product topology (so that 0 is compact

metrizable), ff the <r-field of Borel subsets of fi. Let {pikit)} with

i, kEI be a standard transition matrix function with no instantane-

ous states (see [l, pp. 123 ff., 149]), and X a positive real. Then

{Pik(M)} is again a standard transition matrix function with no

instantaneous states. Put

d
Çik = — Pikit)

dt
for i j£ k;

i-0

and

d
?»"=- — P»(t)
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It is important to remember that (d/dt)pikQ^t)\ f_o—Xga, i^k;

— (d/dt)puÇkt)\ i=o = Xg,-. Fix ioEI- Write Px for the unique probabil-

ity on fj which makes the coordinate process {w(r):rER*} Markov

with transition probabilities {pik(Kt)} and a(0) =io a.s. [Px].

Putßo= {w|wGß;limr,r„,r6B*co(r)=w(ro),allr0GP*;limrii,r6Ä*co(r)

exists for all 2 = 0; limrît.reR'co(r) exists for all 2>0}. It is easy to

check (see Theorem 3.4 of [4]) that floG?; and by Theorem 4 on

p. 158 of [l], Px(Qo) = l for all X. Define Xt(u)=i0, lor 2 = 0 and
coE^o; =Hmrit,reR*co(r) lor 2 = 0 and coGßo- The process X.(-) is

jointly measurable, has right continuous sample functions with limits

from the left; when Px is installed on 'S, it is a Markov chain with

initial state i0 and transition probabilities {pikÇM)}, and the theory

of §11 of [l] applies to it without the necessity of completing the under-

lying a-fields.
The proofs in §3 require further notation, which we introduce here.

Call the inf over an empty set + °o, I„+0(w) = 5, and oo — w = m .

Define recursively t0(co)=0, 7i(oj) = X0(o¡), r„(co) =inf {r\ rER*,

r>T„_i(w), Xr(o>)?*yn(u>)}, 7n+i(io)=AT„(M)+o(oj). Then write t(o>)

= sup„ Tn(co), ffn+x(co) =Tn+i(co) — t„(w). Fix Dj a sequence of finite sub-

sets of / which increase to /, with Do empty. Write <£,(co)

= infjr|rGP*, r>r(o>), XMEDj}, £»=A%,.(to)+0(co). Let Pj(a)

= inf \r\ rER*, r><pj(ü>), X r(u) j¿y ¡(w)} -<fc(w)- Notice that all these

functions are ÍF-measurable. Further t(u>) is the least t, il any, such

that in any neighborhood of 2, A.(co) passes through an infinite num-

ber of states. If t(w) < oo, and in (0, t(ío)), X.(o¡) passes through an

infinite number of states, we put coEG. Finally, let £Fi be the <r-field

spanned by {Xt; 0 = 2gl}.

3. The results. To begin with, it is clear that for all X, P\(r= 1) =0.

Moreover,

Theorem 1. The Px, restricted to "Sx, are equivalent on the set

{w|wGÖ, t(co)>1}.

Proof. This follows by an elementary computation. Let s be a

finite string of symbols; the first, s(0), will be a non-negative integer,

and there will be s(0) + l more, numbered s(j), 1 =j = s(0)-fT, which

are elements of /; s(l) = i0. Let E(s) = {új|ts(o)(w)<1=ts(o)+i(co);

7;(üj) = s(;'), lájás(0) + l}. Then [r>l] = U, E(s). Moreover, on

E(s), ffi and the tr-field spanned by {a,-, l=i = s(0)} are equal. For

all Px, the [ytij—lt " " ' } form a discrete time stationary Markov

chain, with transition probabilities {n,*}, where

Vik = q%k/qi    when    i ^ k and qt > 0,

= 0 when   i = k   or   q{ = 0.
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The matrix may be substochastic. See §15 of [l]. Consequently, for

each s, P\Eis) is positive for all X or none, according as

/«(0) \     8(0)

(   IT ?«(/) )  II ?«</)« Ü+1)
\ y=i / y_i

is positive or 0. If this quantity is positive and s(0)>0 (the other

cases are trivial) the conditional distribution of {o¡, lújúsiO)},

given Eis), relative to P\ is that of the first s(0) of s(0)+l inde-

pendent exponential random variables with parameters \qau),

l=/^s(0) + l, respectively, constrained so the sum of the first s(0)

is less than 1, while the sum of all is greater than or equal to 1. As X

varies, these distributions stay mutually equivalent, completing the

proof.

Theorem 2. The Px, restricted to 9í, are mutually orthogonal on the

set {w|cüGfi, t(w)<1}.

Proof. Call this set F. Then F=(Fr\G)U(F-G). By Theorem 4

on p. 227 of [l ], Fi^G as well as F — G is of positive probability simul-

taneously for all Px or none. Suppose then that the first is of positive

measure. Under Px, given the values of y¡, l^jún+m, in I, the

random variables {<r3, l^j^w} are independent, exponential with

parameters Xg7í, lújún. See Theorem 2 on p. 210 of [l]. Hence,

given G (not FC\G), under Px the random variables {qyjVj, 1 új< °° }

are independent exponential with common parameter X. Thus

Px { lim  w-1 ¿ qyi<Tj = X-11 g! =1

and hence

Px\(Fn G) and  lim n~l ¿ q^tr, -¿\-l\ == 0.

But the set in braces is in SFi, and we may conclude that the P\,

restricted to EFi, are mutually orthogonal on £P\G.

Next, suppose F — G is of positive probability. It is not possible to

use the previous argument with 07 replaced by p¡ because 0y+i may

be equal to </>, with positive probability, even when Dj+i properly con-

tains Dj. We overcome this difficulty by a trick. Let /,-(w) = 1 if

4>j(u>) <4>i-i(u) and p,-(w) < °o ; = 0, elsewhere. Put £„(w) = H"=ifj(<>}),

so that Fn(us) î« on F — G. Now put Gj(co) = least n such that

£n(w)^i, and ^y(«)=pci(li)(«)g{(?.(M)(«). Each d>j is optional in the

sense of pp. 160 ff. of [l], so that by repeated applications of Theo-

rem 2 on p. 210 of [l] the conditional distribution of {ßj, JÜJ
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given [t< oo ] — G (not F—G) relative to P\ is that of a sequence of

independent exponential random variables with common parameter

X. Hence

PA  lim m-1 Zßi = X-1] [r < oo] - g\ = 1.

But on F—G let <f>(o)) be the least j such that <¡¡G¡wi(¿) < 1. Since 0 is

finite on F—G, the asymptotic behavior of «-1]C"=-i Mw) an<l

«_122"-i &+*(«) fa) coincides for coEF—G, and

Px { (F - G) H lim n~l ¿ 0m ^ X"1} = 0.

Since the set in braces is fJi-measurable, the proof terminates.
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