THE *u*-ALGEBRA OF A RESTRICTED LIE ALGEBRA IS FROBENIUS

ASTRID J. BERKSON1

Let C be a field of characteristic $p \neq 0$, L a restricted finite dimensional Lie algebra over C and u(L) its restricted enveloping algebra or u-algebra [3, p. 192]. If a_1, a_2, \dots, a_n is an ordered basis for L, a basis for u(L) is given by the monomials $a^I = a_1^{t_1} \cdot \dots \cdot a_n^{t_n}$, $0 \leq i_s < p$ [3, p. 190].

Let S be the C-subspace of u(L) spanned by all these monomials except $a_1^{p-1} \cdots a_n^{p-1}$. Then the usual straightening procedure, working both in the universal enveloping algebra and in u(L) and using both commutation and the p-power map, can easily be used (cf. [3, Chapter V, especially Lemma 4, p. 189]) to prove

LEMMA. Let $a^I = a_1^{i_1}a_2^{i_2} \cdot \cdot \cdot \cdot a_n^{i_n}$, $a^J = a_1^{j_1}a_2^{j_2} \cdot \cdot \cdot \cdot a_n^{j_n}$. If $\sum_s i_s + \sum_s j_s < n(p-1)$ then a^Ia^J is in S. If $\sum_s i_s + \sum_s j_s = n(p-1)$ then a^Ia^J is in S also unless for each s, $1 \le s \le n$, $i_s + j_s = p-1$, in which case $a^Ia^J \equiv a_1^{p-1}a_2^{p-1} \cdot \cdot \cdot \cdot a_n^{p-1}$ modulo S.

An associative algebra A is called a Frobenius algebra if there is a left A-module isomorphism

$$A \cong \operatorname{Hom}_{\mathcal{C}}(A, \mathcal{C}) = A^*,$$

where A^* is a left A-module via $(a\phi)(x) = \phi(xa)$ for ϕ in A^* and a, x in A [2, p. 3].

THEOREM. Let L be a restricted finite dimensional Lie algebra over a field C of characteristic p. Let u(L) be the u-algebra of L. Then u(L) is a Frobenius algebra.

PROOF. Let ϕ in $\operatorname{Hom}_{\mathcal{C}}(u(L), \mathcal{C}) = u(L)^*$ be given by

$$\phi(S) = 0, \qquad \phi(a_1^{p-1}a_2^{p-1} \cdot \cdot \cdot \cdot a_n^{p-1}) = 1.$$

Let x be in u(L) and suppose $x\phi = 0$. Using the basis described above, $x = \sum c_I a^I$ with c_I in C. As usual we define degree $a^I =$ degree $a_1^{i_1} a_2^{i_2} \cdots a_n^{i_n}$ as $\sum_s i_s$ and degree x as the maximum of the degrees of the a_I with $c_I \neq 0$. If degree x = k and $c_H \neq 0$ for degree $a^H = k$, we let

$$a^{H'} = a_1^{p-1-h_1} a_2^{p-1-h_2} \cdot \cdot \cdot a_n^{p-1-h_n}.$$

Received by the editors November 1, 1962.

¹ This is part of a Ph.D. dissertation written at Northwestern University.

Then

$$0 = x\phi(a^{H'}) = \phi(a^{H'}x) = c_H$$

by the lemma. Thus x = 0.

Clearly the map $x \rightarrow x\phi$ is a u(L) monomorphism of u(L) into $u(L)^*$. Since both are finite dimensional vector spaces of the same dimension over C, this map must be an isomorphism.

REMARKS.

- 1. It is easily seen by means of examples that the theorem cannot be strengthened to show that u(L) is symmetric, i.e., that the isomorphism between u(L) and $u(L)^*$ can be chosen to be a two-sided module map. For example, if C is an imperfect field of characteristic two, β in C but not in C^2 , L the C-derivation algebra of $C(\sqrt{\beta})$, then u(L) is not symmetric.
- 2. Let hd_R denote the left homological dimension of the R-module M. It is known that if R is a Frobenius algebra over a field then $hd_RM=0$ or ∞ [2, Theorem 10]. Thus our theorem shows that for any u(L)-module M we have $hd_{u(L)}M=0$ or ∞ . This is part of Theorem 5.1 of [1].

BIBLIOGRAPHY

- 1. Byoung-Song Chwe, Relative homological algebra and homological dimension of Lie algebras, Unpublished Ph.D. thesis, Univ. of California, Berkeley, California, 1961.
- 2. S. Eilenberg and T. Nakayama, On the dimension of modules and algebras. II, Nagoya Math. J. 9 (1955), 1-16.
 - 3. N. Jacobson, Lie algebras, Interscience, New York, 1962.

NORTHWESTERN UNIVERSITY