A THEOREM ON GENERIC NORMS OF STRICTLY POWER ASSOCIATIVE ALGEBRAS

J. TITS

Let A be a finite-dimensional strictly power associative algebra with an identity element over an arbitrary field k, and let

$$m(x) = x^n + \sum_{i=1}^n \lambda_i(x) x^{n-i}$$

be its generic minimum polynomial [1]. The coefficients λ_i are polynomial functions on A. Such a function f is called a Lie invariant under a linear transformation L of the underlying vector space if $f(a+tL(a)) \equiv f(a) \pmod{t^2}$ where t is an indeterminate and f is extended in the usual way to the vector space over k(t); in particular, if f is a linear form on A (for instance the generic trace λ_1), this means that f(L(a)) = 0.

THEOREM. The coefficients λ_i of the generic minimum polynomial are Lie invariant under every derivation d of A.

Assuming that A is a Jordan algebra (over a field of characteristic not two), that i=1 and that d is the inner derivation which sends a into $b \cdot ac - ba \cdot c$, we have the

COROLLARY. The identity $\lambda_1(b \cdot ac) = \lambda_1(ba \cdot c)$ holds in any Jordan algebra.

This result has been obtained independently by N. Jacobson (unpublished).

PROOF OF THE THEOREM. Let K be an arbitrary extension of k. The extensions of the forms λ_i and of the derivation d to A_K will be denoted by the same symbols λ_i and d. Let t be an indeterminate scalar and, for $a, b \in A_K$, denote by $\{a, b\}_i$ (resp. $\mu_i(a, b)$) the coefficient of t in $(a+tb)^i$ (resp. in $\lambda_i(a+tb)$). As m(a+tb) vanishes identically, the coefficient of t in it must be zero, that is,

(1)
$$\{a,b\}_n + \sum_{i=1}^n \lambda_i(a) \cdot \{a,b\}_{n-i} + \sum_{i=1}^n \mu_i(a,b) \cdot a^{n-i} = 0$$

It is easily seen that $d(a^i) = \{a, d(a)\}_i$; therefore

Received by the editors October 1, 1962.

36 J. TITS

(2)
$$d(m(a)) = \{a, d(a)\}_n + \sum_{i=1}^n \lambda_i(a) \cdot \{a, d(a)\}_{n-i} = 0$$

for every $a \in A_K$. Setting b = d(a) in (1) and subtracting (2), we have

$$\sum_{i=1}^{n} \mu_{i}(a, d(a)) \cdot a^{n-i} = 0.$$

If a is generic (over k), it does not satisfy any polynomial identity of order n-1, with coefficients in K; thus

$$\mu_i(a, d(a)) = 0,$$

and the same relations then hold for arbitrary $a \in A_K$.

By the definition of the $\mu_i(a, b)$ this is the Lie invariance of the $\lambda_i(a)$ which we wished to prove.

BIBLIOGRAPHY

1. N. Jacobson, Some groups of transformations defined by Jordan algebras. I, J. Reine Angew. Math. 201 (1959), 178-195.

Université de Bruxelles, Bruxelles, Belgium