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Let A be a finite-dimensional strictly power associative algebra

with an identity element over an arbitrary field k, and let

n

mix) = xn + H Xiix)xn~i
¿»i

be its generic minimum polynomial [l]. The coefficients X< are poly-

nomial functions on A. Such a function / is called a Lie invariant

under a linear transformation L of the underlying vector space if

fia+tLia)) =fia) (mod t2) where t is an indeterminate and / is ex-

tended in the usual way to the vector space over kit) ; in particular,

if/ is a linear form on A (for instance the generic trace Xi), this means

that/(7(a)) = 0.

Theorem. The coefficients X,- of the generic minimum polynomial are

Lie invariant under every derivation d of A.

Assuming that A is a Jordan algebra (over a field of characteristic

not two), that i= 1 and that d is the inner derivation which sends a

into b-ac — ba-c, we have the

Corollary. The identity Xi(ô-oc)=Xi(ôa-c) holds in any Jordan

algebra.

This result has been obtained independently by N. Jacobson (un-

published).

Proof of the theorem. Let K be an arbitrary extension of k. The

extensions of the forms X¿ and of the derivation d to A k will be denoted

by the same symbols Xi and d. Let t be an indeterminate scalar and,

for a, bEAR, denote by {a, &},• (resp. /x;(a, b)) the coefficient of t in

ia+tb)i (resp. in \iia+tb)). As mia+tb) vanishes identically, the

coefficient of / in it must be zero, that is,

(1) {a, b}n + ¿ Ha)-{a, b}n-i + ¿ m.O, b)-a-< = 0
*-i i=i

It is easily seen that d(a') = {a, ¿(a)} <; therefore
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(2) á(»(a)) = {a, dia)} „ + Z Ha) ■ {a, ¿(a)} „-■ = 0
t-i

for every üEAk- Setting 6 = d(o) in (1) and subtracting (2), we have

n

Zviia, dia))-an-i = 0.
»=i

If a is generic (over ¿), it does not satisfy any polynomial identity of

order » —1, with coefficients in K; thus

mia, dia)) = 0,

and the same relations then hold for arbitrary aEAic-

By the definition of the ¡¿¿a, b) this is the Lie invariance of the

Ai(a) which we wished to prove.
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