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Introduction. A complex number sequence B=[bn} will be called

absolutely convergent [2, p. 72] if

H | bp — bp+i |   < =o.
p

If the function g is Riemann integrable [l, p. 192] on [0, l], the

generalized Hausdorff matrix, H", determined by g is defined by

Pin,i.

0       if p > n

/(     ) xpil - x)n-"dgix)        if p ^ »
[0,1] \p /

for£}=0, 1,2,....
This paper is concerned with the determination of those generalized

Hausdorff matrices which sum all absolutely convergent sequences.

Theorem 2 gives a sufficiency condition stated in terms of the be-

havior of the points of continuity of the graph of g and Theorems 3

and 4 provide examples which serve to further describe functions

which generate such matrices. Theorem 5 gives a necessary and suffi-

cient condition in terms of moment sequences. Theorem 1 gives con-

ditions which are necessary and sufficient for a semi-infinite complex

number matrix to sum all absolutely convergent sequences and al-

though the theorem is known [3], a brief proof is included here for

completeness since the author does not know of one in the literature.

Theorem 1. If A is an infinite complex triangular matrix, then the

following two statements are equivalent:

(i) If B is an absolutely convergent complex number sequence, then

A-B = T converges ; and

(ii) (a) there is a number K such that if n, j is a nonnegative integer

pair, then

¿-i  A.n,p

j>—0

<K,
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(b) the sequence

izAn,y
\ p-0 /  n-0

converges, and

(c) for each nonnegative integer p, the sequence

\a rI ¿±n,p) n=p

converges.

Proof. Suppose (i) is true. Then (ii)(b) and (ii)(c) follow as con-

sequences of the absolute convergence of 1, 1, 1, • • • , and sequences

of the form 0, 0, 0, • • • , 0, 1, 0, ■ • • .

In order to show that (i) implies (ii)(a), it is first established that

(i) implies the existence of a number M such that

(1) \A,.P\  <M;       "I =0,1,2,
P>

Since (i) implies (ii)(c), there is a positive number sequence C such

that for each nonnegative integer p, \An,p\ <cv; n = 0, 1, 2, • • • . If

(1) is not true, then there is an increasing sequence N of integers

and an increasing sequence P of integers such that po = 0 and

M„.lPj| yi'Zj-o C}; i=l, 2, 3, • ■ • . Let B be the absolutely con-
vergent sequence

bj =

il

2¿

0

if i = Pi,

if i ^ Pi,

1, 2, 3,

The sequence T = A-B is unbounded since the sequence C is un-

bounded if (1) is not true;

tnA    = /  . An,,p Op
A-m.pj

J>=0 i-i V
>

^4n,-,î -z-
U 2'

>2jE cAi--)>2*Za-

This contradicts the assumption that (i) is true, hence (1) is true.

If (ii)(a) is not true, then for each c>0 there is a nonnegative

integer pair n, j such that I Zl-o An,p\ >c. Let M be the number
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given in (1); and for each nonnegative integer k, let «t, /* be an

integer pair such that

(2)
n

2—i "»oiP
p=»0

> 4M   and 2-1 Ant,P
p=0

> 4k+1M2nk-i;       k^l.

Let P> be the absolutely convergent sequence such that for each non-

negative integer p,

(   1 if p á jo.

1
»- = if M* á /> áÍ*+l>

2*+i

0 if /* < /> < «t.

Consider the sequence T=A-B. Using (1)

0, 1, 2, •.. .

'»J   ̂ 2-1   ^»i, — lÍMi_i;       £ = 1, 2, 3,
j>="i-i

and from (1) and (2) it follows that

2-1      Ank,i
P="k-1

> 4'Mnii-i.

Therefore,

tnk |   > 2"Mnk-i - Mnk-i > Mnk-i2*~x,

from which it follows that T is unbounded, contrary to (i) being true.

Thus, (i) implies (ii).

Suppose (ii) is true and B is an absolutely convergent sequence.

If C is a constant term sequence and D is the sequence such that for

each nonnegative integer n, d„ = bn — c, then A-B = A-C+A -D.

Therefore, we shall suppose that B has limit 0.

There is a number K' such that

K'>

l*o| +¿ K-íp+i|
p—o

HAn,p\,     .}  =0,1,2,
P-0 I        J )

\An,p\,  n\  =0,1,2,.-
p>

and

Il on « = 0, 1, 2,
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If £>0, let N' be a positive integer such that if n>N', then

(3) Z I bp — bp+xI   <-    and    \ b„\  <-
± 32A' '     '        16K'

For each nonnegative integer m = A', let jm be a positive integer such

that if n >jm and £ is a positive integer, then

(4)

Let

I  -^-n,»» ■^■nA-k.m I    **C16A'A'2m

A = Eym.

If n> A and jfe = 1, 2, 3, • - • , then

(5) \tn-tn+k\  =

n+*

/ . A-n.pOp 7 . -An+k.pOp

p=0 p=0

By use of the triangle inequality and summation by parts, it follows

that the right side of (5) is equal to or less than

(6)

n-l/

L(l»i-
,-o\ p-0

n+fc

¿^ ^n+*,p

p—0

•+*.* I  j +   | Ön | 7 . **-n,p

p=0

n+fc n+fc—1   / ' I  \

+   |&n+*|     E -4»+*.P    +     E    (   \°i~ °j+l\     E ^n,p      )■
p—0 j=n    \ p=0 I   /

It follows from (3), (4), and (6) that [i„ — tn+k\ <c. Therefore, (ii)

implies (i).

Definition 1. R[a, b] is the function set to which g belongs if and

only if g is Riemann integrable on [a, b].

Definition 2. If n, p, pûn, is a nonnegative integer pair, then

/..m - (;) x*(l — x)"-".

If g is in R[0, l], then fio,i)fn,pdg exists.
Proofs for the following lemmas are omitted.

Lemma 1. Suppose

(a) g is in R[0, 1 ] and

(b) K is a number such that if t is in [0, l] and g is continuous at

t,then \g(t)\ <K;
then
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I/,gdfn,p
10.1]

=  KV[o,l]fn,p,

where F[o,i]/„,p denotes the variation of fn,v on [0, l].

Lemma 2. If t is in the sect (0, 1 ] and p is a nonnegative integer, then

/,,f(x)-»0 as n—>oo uniformly on [t, l].

Lemma 3. If n,j, j £= n, is a nonnegative integer pair, then

i
Hfn.pix) is nonincreasing on [0, l],
p-0

Lemma 4. If p is a nonnegative integer and t is a number in (0, l],

then there is a number K such that if x is in [t, l] and n = p, p + l,

p+2, ■ • • , then

\f'n.pix)\     <K.

Definition 3. If g is in P[0, l], Ma is the point set to which the

point p with abscissa x belongs if and only if x is in [0, l] and g is

continuous at x.

Theorem 2. 7/ g is in R[0, l] and Ma has only one limit point on

the Y-axis, then H" satisfies the conditions of Theorem I.

Proof. Integration by parts plus Lemma 3 shows that H" satisfies

(ii)(a). That H" satisfies (ii)(b) follows from the fact that for each

nonnegative integer n

È tj:,p = f idg.
P=0 J  [0,1]

In order to show that Ha satisfies (ii) (c), we suppose that p is

a nonnegative integer and c>0. Let L be a number such that if x

is in [0, l], then

(7) |g(*)|   <L.2

Let (0, a) be the limit point of M„ which lies on the F-axis. There

is a />0 such that if x is in [0, t] and g is continuous at x, then

(8) \gix)-a\   <
L+ 1

There is a positive integer N such that if n>N, then

2 From the definition of the R-S integral used here, it follows that if g is in R [0, 1 ],

then g is bounded.
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(9) fn,P(x) is decreasing on [t, l] and/„,p(2) <
L+ 1

Suppose p = 0. Integration by parts shows that

(10) f     fn,odg = fn.o(t)g(t) - g(0) - afn,oit) + a-  f     (g - a)dfn,o
J  [0,(] J  [0,f]

It follows from (7) and (9) that

(11) | afn.oit) I   < c   and    | g(2)/n.„(2) |   < c.

Also, from Lemma 1 and (8) it follows that

(12) ig — a)dfn,o   < cF[o,i]/n,o = c.
\J  [0,f]

Integration by parts plus (9) shows that

(13) I f     fn,odg   < | g(t)fn,o(t) |  + LFi,,ii/..i < 2c.
\J [MI

It follows, by use of (10), (11), (12), and (13), that

fn.odg -[a- g(0)]1/  >\J  [0,1]

< 5c.

If p>0, an argument similar to that above shows that

fn.pdg-+0   as   w—»°o.
/, 10,11

Therefore, H" satisfies (ii) (c).

Theorem 3. There is in R[0, 1 ] a function h such that Mh has two

limit points on the Y-axis and Hh satisfies the conditions of Theorem 1.

Proof. Let F be a decreasing sequence which lies in (0, 1) and has

0 as its limit. By Lemma 4, there is a number sequence K such that

if p is a nonnegative integer and x is in [tp, l], then for j = 0, 1, 2,

• • • , p and n=j,j + l,j+2, ■ • •

(i4) i/;,/*) i <*,.

Let 5 be a sequence such that lor p = 0, I, 2, • • •

sp+x < tv < i„ < 1

and
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(15)

Let

*(*) =

(jp — lp)kp < — •

0 if ío á * á 1,

0 if Jp+i ^ x á <p, /> = 0, 1, 2,

1 if tv < x < sp, P - 0, 1, 2, • •

0 if x = 0.

A is in P[0, l] and it was established in Theorem 2 that this alone

is sufficient for Hh to satisfy (ii) (a) and (ii)(b) of Theorem 1.

In order to show that Hh satisfies (ii)(c), we suppose that p is a

nonnegative integer and that c>0. There is a positive integer N>p

such that if n>N, then

(16)
£ V      8

There is a positive integer N' such that if n>N', then

/„,p is decreasing on [tN, l] and
(17)

Let #" = #+#'.
Suppose n>N".

I/»...(to) I   <
8

(18)
1/ ;I«7  [0,1]

fn.pdhl

i   f /».p¿*  + fn,pil)hil)   - /,.,(to)*(to)   -    f Äd/n,
•/   Í0  Í..1 •/   rtxr.11

But, A(1) = 0, hitN)=0 and it follows from (17) that

c

/,
W/,.

[<AT,1]

<

8

Therefore, the right side of (18) is less than

(19) I/, fn.pdh
[0.1*1

+ 7

There is an integer M>N such that
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(20) FlO.íjfl/n.p < —
4

Since A(0) = 0 and A(2jí) = 0, integration by parts plus the triangle

inequality shows that

(21) I f       U.pà
\J lo,tN¡

f       hdfn,p\+\f f, ■ndh
lo,tM] Itu.W

It follows from (20) that

(22) f       hdfn
J   \OA..\[O.ij,]

Since h is a step function on [ím, In], the triangle inequality shows

that

/M-N
fn.pdh     =■     Z     I fn.p(lM-j)   - fn.p(sM-j) \ .

LtM.'Nl J=0

N is greater than p. Therefore, if 2 is in {Hm-í, tx], then |/„'p(2) | <ku-j

so that

From (15),

|/n,p(2K-y)   — fn,p(SM-j) I   < kM-j\ Sm-j ~ tM-}\  ■

M-N M-N       I

Z  kM-i I SM-i — Im-j I   <   E TT7-
y-o y-o   L     '

which by (16) is less than c/8 so that

(23) IX fn.pdh
Ull.tNl

<
8

It follows then, from (18), (19), (21), (22), and (23), that

1/  f-\J [0,1]

dh <c.

Therefore, Hh satisfies (ii)(c).

Theorem 4. There is a function g in R[0, l] such that Mg has two

limit points on the Y-axis and H° does not satisfy the conditions of

Theorem 1.

Proof. It is sufficient to find a g in R[0, l] such that
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if        fn.ldgY
W  [0,1] /  n-l

diverges.

For each positive integer n and each x in [0, l],

fn.lix)   Û /„,! (~)  -   (l - -)"       -» (Tl.

There exist positive integer sequences N and J such that

Mp </p < Wp+i,       p = 1,2,3, ■•■ ,

and

It follows from these conditions that

fipÁ—)<~-
\ Mp+i / 8

(24)

Let

/y i is increasing on   0,-
L   Wp+i J

and is decreasing on
L«p        J

«(*) =

1
0 if — á x á 1

/o

1 1
1 if -t— < x < —— ,  p = 0,1,2,

jip+i jip

1 1
0       if-   -¿¡eg-   -, p = 1,2,3,

Jip

0       if x = 0.

Jip-i

Suppose p is a positive integer.

f     /y,.i¿« = - f «*//,.i - f «'//
^ [0,1] ^  [0,l/np+1] •>  [l/n„ + 1 l/n„l

^   [l/n,U
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From (24) it follows that

I/,
I/,

gdfip.i
[0,1/np+il

gdfjP
[l/lp,l]

<  e-78.

Also,

(25)
-/.

gdfip,i
[l/"p+l.l/nrl

- +fiP,iil/nP+i)gil/np+x) - fir.iil/np)gil/np) + fjfll(l/jp),

with the sign of the last term negative if p is even and positive if p

is odd. Therefore, if p is even the right side of (25) is less than

— er1-\-e~1/i and if p is odd the right side of (25) is greater than

e-1 —e_1/4 so that fio,i]f,-P,idg is less than —e_1/2 if p is even and is

greater than e~1/2 if p is odd. Therefore, the sequence

if        fn.ldgY
W  [0,1] /   n-1

contains a divergent subsequence which shows that H° does not satis-

fy (ü)(c).

Theorem 5. // g is in R[0, l] and C is the moment sequence deter-

mined by g, then H" satisfies the conditions of Theorem 1 if and only

if for each nonnegative integer p the sequence

(CWL,
converges.

Since the conclusion follows readily from the conditions of state-

ment (ii) Theorem 1, the proof is omitted.
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