CONCERNING HAUSDORFF MATRICES AND ABSOLUTELY
CONVERGENT SEQUENCES!

J. P. BRANNEN

Introduction. A complex number sequence B={b,} will be called
absolutely convergent [2, p. 72] if

E |bp_ bp+1| < w.

P
If the function g is Riemann integrable [1, p. 192] on [0, 1], the
generalized Hausdorff matrix, H?, determined by g is defined by

0 fp>n

fw.n (Z)xp(l —a)rdg(n)  Hfpsnm

for®}=0,1,2,---.

This paper is concerned with the determination of those generalized
Hausdorff matrices which sum all absolutely convergent sequences.
Theorem 2 gives a sufficiency condition stated in terms of the be-
havior of the points of continuity of the graph of g and Theorems 3
and 4 provide examples which serve to further describe functions
which generate such matrices. Theorem 5 gives a necessary and suffi-
cient condition in terms of moment sequences. Theorem 1 gives con-
ditions which are necessary and sufficient for a semi-infinite complex
number matrix to sum all absolutely convergent sequences and al-
though the theorem is known [3], a brief proof is included here for
completeness since the author does not know of one in the literature.

9
m,,=

THEOREM 1. If A is an infinite complex triangular matrix, then the
Sfollowing two statements are equivalent:

(i) If B is an absolutely convergent complex number sequence, then
A-B=T converges; and

(ii)(a) there is @ number K such that if n, j is a nonnegative integer
pair, then

<K,

i
Z A"rP

=0
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n L
{Z 4}
p=0 n=0
converges, and

(c) for each monnegative integer p, the sequence

(b) the sequence

)

{ An,p} n=p

converges.

Proor. Suppose (i) is true. Then (ii)(b) and (ii)(c) follow as con-
sequences of the absolute convergence of 1,1, 1, - - -, and sequences
of the form 0,0,0,---,0,1,0, - - -.

In order to show that (i) implies (ii)(a), it is first established that
(1) implies the existence of a number M such that

(1) | 4., < M; :}=o,1,2,...,

Since (i) implies (ii)(c), there is a positive number sequence C such
that for each nonnegative integer p, IA,.,,I <cpimn=0,1,2,---.If
(1) is not true, then there is an increasing sequence N of integers
and an increasing sequence P of integers such that po=0 and
|A,,‘.,,‘.| >4i) Mt 1=1,2,3, .. Let B be the absolutely con-
vergent sequence

1
- if= i

=1z TP 23,
0 if 7 # p5

The sequence T'=A4:B is unbounded since the sequence C is un-
bounded if (1) is not true;

Tl ¢

=0 27

iAn‘.i
=2 —==>

=1 21

A"hpi
24

il =] Aussts
p=0

Pi 1 Pimy
>2‘Z Cj(l_—z-i)>2‘z(:j.

=0 =0

This contradicts the assumption that (i) is true, hence (1) is true.
If (ii)(a) is not true, then for each ¢>0 there is a nonnegative
integer pair #, j such that | Do A,.,,,I >c¢. Let M be the number
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given in (1); and for each nonnegative integer &, let #:, ji be an
integer pair such that

Jo %
2 Anos 2 Any
Pp=0 p=0

Let B be the absolutely convergent sequence such that for each non-
negative integer p,

1 ifj’§jo.

2) > 4M and > 4 M2 k=1,

ifm = p S Jevr; k=0,1,2,---

by = 2k+1
0 if fi <p < m.
Consider the sequence T'=A4 - B. Using (1)
Ik
Z A"k-?
p=ng—1
and from (1) and (2) it follows that

Tk
Z Ankr’

Pp=ng—1

— Mmn_s; E=1,2,3,---;

1
lt“k' g;

> 4&M Ne—-1.

Therefore,
I t,.kl > 2*Mmp—y — My > Mn_,2F1,

from which it follows that T is unbounded, contrary to (i) being true.
Thus, (i) implies (ii).

Suppose (ii) is true and B is an absolutely convergent sequence.
If Cis a constant term sequence and D is the sequence such that for
each nonnegative integer #, d,=b,—c¢, then A-B=A4-C+A-D.
Therefore, we shall suppose that B has limit 0.

There is a number K’ such that

(150] + 3 |5 — bpus]
p=0

i
2 Ans
p=0

n
K> ’j =0,1,2..-,

n
IAn.P|7 P} =0,1,2---, and

2], #=0,1,2,--.
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If ¢>0, let N’ be a positive integer such that if > N’, then

¢ ¢
and | ba| <——-
32K’ 16K’

3) ilbp—pr' <

For each nonnegative integer m = N’, let j. be a positive integer such
that if »>j, and % is a positive integer, then

@ | Aam = Auim| < —
NI T
Let
NI
N =2 jn
m=0
If n>Nand k=1, 2,3, .- -, then
n n+k
(5) I tn — tn+k| = Z An.pbz’ - Z An+k.z:bzr .
p=0 p=0

By use of the triangle inequality and summation by parts, it follows
that the right side of (5) is equal to or less than

n—1 J n
E(l b} - b:'+1| Z I An.;— An+km| ) + I b"l Z An.p
(6) =0 p=0 p=0
n+k nt+k—1 i
+ |bn+k| EA»HM: + Z (‘b:‘—bﬂl‘ ZAn-p )
p=0 J=n =0

It follows from (3), (4), and (6) that [t,.—t,.+k] <c. Therefore, (ii)
implies (i).

DEFINITION 1. R[a, b] is the function set to which g belongs if and
only if g is Riemann integrable on [a, b].

DErFINITION 2. If %, p, p <n, is a nonnegative integer pair, then

Jap(2) = (:)xp(l — x)vs,

If gis in R[0, 1], then f(0,1)fx.50¢ exists.
Proofs for the following lemmas are omitted.

LemMA 1. Suppose

(a) gisin R[0, 1] and

(b) K is a number such that if ¢t is in [0, 1] and g is continuous at
t, then | g(f)| <K;
then



118 J. P. BRANNEN [February

[ st
(0,1}

where Vio11fa,» denotes the variation of fa,, on [0, 1].

< KVio,ufn,

LEMMA 2. If t is in the sect (0, 1] and p is a nonnegative integer, then
fn2(x)—0 as n— o uniformly on [t, 1].
LEMMA 3. If n, j, j Sn, is a nonnegative integer pair, then
i
D fa.a(%) is nonincreasing on [0, 1].

p=0

LEMMA 4. If p is a nonnegative integer and t is a number in (0, 1],
then there is a number K such that if x is in [t, 1] and n=p, p+1,
p+2, -, then

| fan(®)| < K.

DEerINITION 3. If g is in R[0, 1], M, is the point set to which the
point p with abscissa x belongs if and only if x is in [0, 1] and g is
continuous at x.

THEOREM 2. If g is in R[0, 1] and M, has only one limit point on
the Y-axis, then HY satisfies the conditions of Theorem 1.

Proor. Integration by parts plus Lemma 3 shows that H? satisfies
(ii)(a). That H7 satisfies (ii)(b) follows from the fact that for each
nonnegative integer n

S, =[ 1
p=0 {o,1}

In order to show that HY satisfies (ii)(c), we suppose that p is
a nonnegative integer and ¢>0. Let L be a number such that if x
isin [0, 1], then

(M | g(x)| < L2

Let (0, a) be the limit point of M, which lies on the Y-axis. There
is a £>0 such that if x is in [0, ¢] and g is continuous at x, then

® |g<x>—al<L+1-

There is a positive integer N such that if > N, then

2 From the definition of the R-S integral used here, it follows that if g is in R[0, 1],
then g is bounded.
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9 fn.p(%) is decreasing on [, 1] and f, (1) <

c
L+1
Suppose p=0. Integration by parts shows that

(10) fma=nwnw—«®—qmw+a—ﬁwg—wam

(0,¢]

It follows from (7) and (9) that

(11) | afan(®)| <c¢ and | g)faol®)| <e.
Also, from Lemma 1 and (8) it follows that

(12) ‘f (g — @)dfn,0| < cVi0.11fn0 = C.
[o,¢}

Integration by parts plus (9) shows that

[ fusts
¢, 11

It follows, by use of (10), (11), (12), and (13), that

(13) < | g@fan®)| + LV 11 faro < 2c.

[ fundg — o — g©)] | < sc.
[0,1]

If $>0, an argument similar to that above shows that

f frpdg—0 as n— o,
10,11

Therefore, H? satisfies (ii)(c).

THEOREM 3. There is in R[0, 1] a function h such that My has two
limit points on the Y-axis and H" satisfies the conditions of Theorem 1.

Proor. Let T be a decreasing sequence which lies in (0, 1) and has

0 as its limit. By Lemma 4, there is a number sequence K such that

if p is a nonnegative integer and x is in [¢,, 1], then for j=0, 1, 2,
c--,pand n=j3, j+1, j+2, - - -

(19) | fri@) | < o
Let S be a sequence such that for =0, 1, 2, - - -
Spp1 < £, < 5., <1

and
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1
as) o0 = Dy <
Let
0 iso<s=1,
0 ifs,,+1§x§tp,p=0,1,2’...,
h(x) = .
1 i, <2<spp=012---,
0 ifx=0.

hisin R[0, 1] and it was established in Theorem 2 that this alone
is sufficient for H* to satisfy (ii)(a) and (ii)(b) of Theorem 1.

In order to show that H* satisfies (ii)(c), we suppose that p is a
nonnegative integer and that ¢>0. There is a positive integer N>p
such that if > N, then

=1 c
16 — <=
(16) ngs
There is a positive integer N’ such that if > N’, then

fa.p is decreasing on [t, 1] and

an .
| fanltw)| < 3

Let N”=N+N'.
Suppose n>N".

Jn.o8h

l [0,1)

| s £ OB = fusin) = [ i
0,¢N] ¢

tN.1]

(18)

But, £(1) =0, k(ty) =0 and it follows from (17) that

f hdfa,»
[tn.1]

Therefore, the right side of (18) is less than

(19 ‘f I8k
[0,tn]
There is an integer M > N such that

c
< —.
8

+c
4
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¢
(20 V10,61 fn0 < T

Since £(0) =0 and k(ty) =0, integration by parts plus the triangle
inequality shows that
+f
[

(21) | f fandh| S I f hdfn,»
(0,tn) (0, 4]

It follows from (20) that

fush.

tu N

c
(22) hdf n,p < -
[0,25) 4
Since & is a step function on [tu, ty], the triangle inequality shows
that
M—N
[ st ST nsltad = fualoun|.
[tp,tN) =0

N is greater than p. Therefore, if ¢ is in [ty—_, tv], then | £, (t)| <kau—;
so that

| foo(ta—s) = fap(sae=i) | < Bae—i| sa—i — tae—j| -
From (15),

M-N M-N 1
2 kil suoy =t < X2 pyvavk

=0 =0 2

which by (16) is less than ¢/8 so that

f Sn.o8k
(ear,tN)
It follows then, from (18), (19), (21), (22), and (23), that

c
(23) < —8' .

<e.

l fn.s8h
t0.1]

Therefore, H? satisfies (ii)(c).

THEOREM 4. There is a function g in R[0, 1] such that M, has two
limit points on the Y-axis and H? does not satisfy the conditions of
Theorem 1.

Proor. It is sufficient to find a g in R[0, 1] such that
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{ f fa, ldg}
(0,1} nml
diverges.

For each positive integer # and each x in [0, 1],

fou® éf(—;-) - (1- %)" e,

There exist positive integer sequences N and J such that

”P<jr<np+l) P=1,2,3,“‘,

o) <5
ipi1 . ) ’

fal) <5
7ol np, 8

It follows from these conditions that

and

1
fi,.11s increasing on [0, ]

n
(24) . s
and is decreasing on [— , l:l .
np
Let
( 1
Jo
1 if - <z<L<—5 $p=0,1,2,.-+,
g(x) = Jops1 Jop
0 if. éxé. ’P=1;2’3;"',
J2p J2p—1
0 ifx=0.

Suppose p is a positive integer.

Jipag = = Wpa— [ gl
[0,1] [0,1/n541] [1/np41 1/n5)

- gdfi, 1.
t/n1]
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From (24) it follows that

[ st
[0,1/np41] < 6‘1/8.
‘ f gdfi, 1
[l/"pvll
Also,
S
25) [1/ng41,1/n5)

= + fi,1(1/n11)8(1/1p11) — fi1(1/m5)g(1/n5) % fi,1(1/70),

with the sign of the last term negative if p is even and positive if p
is odd. Therefore, if p is even the right side of (25) is less than
—e14e1/4 and if p is odd the right side of (25) is greater than
e1—e1/4 so that fionfi,1d¢ is less than —e1/2 if p is even and is
greater than e1/2 if p is odd. Therefore, the sequence

([, ot
[o,1] n=l

contains a divergent subsequence which shows that H? does not satis-
fy (i) (c).

THEOREM 5. If g is in R[0, 1] and C is the moment sequence deter-
mined by g, then H? satisfies the conditions of Theorem 1 if and only
if for each nonnegative integer p the sequence

G,

Since the conclusion follows readily from the conditions of state-
ment (ii) Theorem 1, the proof is omitted.

converges.
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