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1. Introduction. The aim of this note is to prove Theorem B below.

(See §2 for definitions.) The proof makes essential use of the Poin-

caré-Bendixon theorem [l, p. 391], A continuous version of this

classical theorem is also true. It follows, for instance, from Theorem

11 in [2]. This enables us to prove Theorem A below, which implies

Theorem B.

Theorem A. Every continuous action of the additive group R2 on the

sphere S2 admits a fixed point.

Corollary. The same fact is true for the projective plane P2, instead

ofS2.

Theorem B. Let X, Y be vector fields of class C, k = l, on the sphere

S2, with [X, Y] = 0. There exists a point pES2 such that X(p) = Y(p)
= 0.

Corollary. The above theorem holds also for the projective plane P2.

The same type of argument used to prove Theorem A, together

with a simple induction procedure, will show that every continuous

action of the additive group Rm (m — l) on S2 (and hence on P2) has

a fixed point. Thus, any finite set Xi, ■ • • , Xm of pairwise commut-

ing vector fields on S2 (or P2) has a common singularity.

Of course, there are differentiable actions of Rm without fixed points

on the torus T2 and on the Klein bottle K2, for every nt — 1. The natu-

ral action of R2 on T2 has only one orbit, which has dimension 2.

Every continuous nontrivial action of R2 on K2 must have at least

one 1-dimensional orbit. There is one differentiable action of R2 on

K2 with exactly two orbits or dimensions 2 and 1, respectively.

It seems plausible that every continuous action of R2 on a compact

2-manifold, other than T2 or K2, must have a fixed point, but, this

question is open at present.

Added in proof. Meanwhile, I have been able to prove this conjec-

ture. See the Research Announcement in the Bull. Amer. Math. Soc.

of May 1963, pp. 366-368.
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2. Definitions and proof that A implies B. Let T be an additive

group and M a set. An action of F on M is a map (f¡: TXM-+M such

that, writing (pit, p) =(¡>tip), one has (¡>.+t(p) =<t>,i'i>tip)) and (f¡oip) -p,

for all s, tET, pEM, 0 = neutral element of T. Then, for each tET,

the map 0<: M-+M, given by p-+(btip) =<¡>it, p), is a 1-1 correspond-

ence whose inverse is <i>_(. When F is a topological group and M is a

topological space, we talk about a continuous action (¡¡, meaning that

(p: TXM-^M is continuous. Then, each <£<: M—*M is a homeomor-

phism. In case F is a Lie group and M is a differentiable manifold,

there is the notion of a differentiable action; each <pt is then a diffeo-

morphism.

For example, let A be a vector field of class Ck, k = 1, on a compact

differentiable manifold M. Integrating X, one obtains a map £: RXM

—>M, where £,(£), for every real s and every pEM, is the point with

parameter value s on the trajectory of X that starts at p. The map £

defines a differentiable action of the additive group R on M [3,

pp. 65, 66]. Conversely, given a differentiable action £ of R on M, one

obtains a vector field X on Af, defined by Xip) = tangent vector, at

2 = 0, of the parametrized curve 2—>£((/>).

Let now F be another vector field, of class Ck, £ = 1, on M. Call n

the action of R on M determined by F. The lie bracket [X, Y] is a

vector field on M, lor which the following well-known lemma holds.

Lemma. [X, F] = 0ow M if, and onlyif,^orjt = ntO^,for alls,tER-

Based on this fact, we say that two vector fields X, Y on M com-

mute when their Lie bracket [X, Y] vanishes identically on M.

A pair of commuting vector fields on a compact differentiable mani-

fold M yields a differentiable action of the additive group i?2 on M.

In fact, the two vector fields generate actions £, n: RXM—*M, and

we define the action <¡¡: R*XM-+M by (¡¡rip) =%.ivtip)) =r¡ti£,ip)),

lor pEM, r=(s, t)ER*. Conversely, given a differentiable action

<i>: i?2XM—>if, one obtains two commuting vector fields X, Y on M

as follows. Let R' and R", respectively, denote the x- and the y-axis

of R\ Let £ = <A| iR'XM) and n = (p\ (R"XM) be the restrictions of

the action 0. Then £ and r¡ are actions of the reals on M, which define,

as above, the vector fields X, Y. These fields commute, by the pre-

ceding lemma.

The orbit of a point pE M under a continuous action d¡: TXM-+M

is the set Tip)= {(¡¡tip); tET}. The point p will be called a fixed

point of the action d> when T(p) = {p}- Let d> be the action of i?2 gen-

erated by two differentiable vector fields on a compact differentiable

manifold M. Then pEM is a fixed point of (p if, and only if, X(p)
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= Y(p) = 0. This follows directly from the uniqueness theorem for

ordinary differential equations.

We see, therefore, that Theorem A implies Theorem B.

A continuous action of R2 on M induces an action of T on M, for

every subgroup TER2- Let R' be the x-axis and R" be the y-axis in

R2. Then a point pEM is fixed under R2 ii, and only if, it is fixed

simultaneously under the induced actions of R' and R" on M. More

generally, if p is fixed under the action of R", then its orbit R'(p)

consists entirely of fixed points of R". Of course, all limit points of the

orbit R'(p) will then be fixed under R" too.

3. Proof of Theorem A. It is known that every continuous action

of the reals on S2 has a fixed point. Let then pES2 be a fixed point

under the y-axis R", which acts on S2 as explained above. Consider

the orbit R'(p). It consists entirely of fixed points under R", and so

does the set of limit points of this orbit. If there is a fixed point q of

R' in the closure of R'(p), q will be fixed under R', R" and hence un-

der R2, proving the theorem. If not, by Poincaré-Bendixon, the co-

limit set of the orbit R'(p) is a simple closed curve C, in fact a closed

orbit of R', whose points are all fixed under R". The curve C bounds

a disc D' in S2. Observe that D' is invariant under R2, since C is also

an orbit under R2. We shall now use transfinite induction to show that

there exists a fixed point of R2 inside D'.

Consider the collection 33 of all closed discs D in S2, such that the

boundary C=dD is a closed orbit of R', whose points are all fixed

under R". The first part of the proof shows that 3) is not empty. Let

33 be partially ordered by inclusion. Notice that for D\j¿Da in 3),

D\EDU is the same as D\E int (£>„). By the Hausdorff maximal prin-

ciple, let {D\} be a maximal chain in 33, and write C\ = dD\. Choose

xE^D\ such that x = lim xn, xnEC\(n). (In order to do this, take a

net {y\} with y\EC\ and let xn = y\<,n) be a convergent subnet. Let

x = lim xn- Since {X(«)} is cofinal in {\}, we have xE^D\.) Then x

is a fixed point of R", and so is every point of the closure of its orbit

CliR'ix)). Notice that Cl(i?'(x)) CA for each X. We may assume that

CliR'ix)) contains no fixed points of R'. Then, the limit set of R'ix) is

CoVJCi, each d being a closed orbit of R', whose points are all fixed

under R". Both Co, Ci are contained in all discs D\. Now, either Co

is disjoint of C\, or Co= Ci = R'(x). Moreover, given X, either d=C\

or d C int(Dx). Suppose first Co<~^Ci = 0. Then, it is easily seen that

at least one of them, say Co, is contained in the interior of all discs

D\. So Co bounds a disc Do, which belongs to 3D and is properly con-

tained in all Dx, thus contradicting the maximality of the chain {Dx}.
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Assume next the other case: Co = &. If Co = CiC int(-Dx) for all X, we

come to a contradiction exactly as above. Otherwise, Co = Ci = Cx0 for

some Xo, and then D0 = i?x0 is the smallest disc in the chain. The group

R' acts on Do, leaving its boundary Co invariant, and has no fixed

point on Co- Then R' has a fixed point y inside Do- In the w-limit set

of the orbit R"iy) we find a closed orbit C of R", pointwise fixed

under R', and, finally, inside Ü, by the same argument, there is a

closed orbit of R', pointwise fixed under R", which will provide a

contradiction against the maximality of the chain {D\}. This com-

pletes the proof of Theorem A.

Corollary. Every continuous action of R2 on the projective plane P2

has a fixed point.

Proof. In fact, it is a simple exercise in covering space theory to

see that every action of a simply connected topological group G on

a space X can be covered uniquely by a continuous action of G on

any covering space of X. So, given an action of R2 on P2, it can be

covered by an action of R2 on 52, which has a fixed point. The projec-

tion of this fixed point will be fixed under the original action on P2.
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