SOME ORTHOGONAL FUNCTIONS CONNECTED WITH POLYNOMIAL IDENTITIES. II ${ }^{1}$

J. B. ROBERTS

In an earlier paper [5] we proved a general polynomial identity, some special cases of which gave rise to sets of orthogonal functions [6]. In this paper we recast this general polynomial identity into such a form that it leads directly to a general class of orthogonal functions containing, as special cases, those given in [6] and also those introduced in [4].

Let n_{1}, n_{2}, \cdots be a sequence of integers each $\geqq 2$ and let $p_{0}=1$ and $p_{j}=n_{1} n_{2} \cdots n_{j}$ for $j \geqq 1$. Then each integer $n, 0 \leqq n<p_{m}$, may be written uniquely in the form

$$
\begin{equation*}
n=a_{0}+a_{1} p_{1}+\cdots+a_{m-1} p_{m-1}, \quad 0 \leqq a_{j}<n_{j+1} \tag{1}
\end{equation*}
$$

and we have

$$
\begin{equation*}
a_{j}=\left[n / p_{j}\right]-n_{j+1}\left[n / p_{j+1}\right] . \tag{2}
\end{equation*}
$$

In [5] we proved the following: if $\sum_{n=0}^{n_{j}-1} f_{j}(n) n^{t}=0$ for $0 \leqq t \leqq \alpha_{j}$ and P is any polynomial of degree $\leqq \alpha_{1}+\cdots+\alpha_{m}+m-1$ then

$$
\begin{equation*}
\sum_{n=0}^{p_{m}^{m-1}} \prod_{j=1}^{m} f_{j}\left(\left[n / p_{j-1}\right]-n_{j}\left[n / p_{j}\right]\right) P(x+n)=0 \tag{3}
\end{equation*}
$$

Since (3) holds for any integers n_{1}, \cdots, n_{m} (each $\geqq 2$) it holds for $n_{1}^{\prime}, \cdots, n_{m}^{\prime}$, where $n_{j}^{\prime}=n_{m-j+1}$. Putting $p_{j}^{\prime}=n_{1}^{\prime} \cdots n_{j}^{\prime}$ and writing $f_{j}^{\prime}=f_{m-j+1}$ we see that the conditions leading to (3) become conditions leading to

$$
\sum_{n=0}^{p_{m}^{\prime}-1} \prod_{j=1}^{m} f_{j}^{\prime}\left(\left[n / p_{j-1}^{\prime}\right]-n_{j}^{\prime}\left[n / p_{j}^{\prime}\right]\right) P(x+n)=0
$$

for the same polynomials P. Noting that $p_{j}^{\prime}=p_{m} / p_{m-j}$ we have the following: if $\sum_{n=0}^{n_{j}-1} f_{j}(n) n^{t}=0$ for $0 \leqq t \leqq \alpha_{j}$ and P is any polynomial of degree $\leqq \alpha_{1}+\cdots+\alpha_{m}+m-1$ then

$$
\begin{equation*}
\sum_{n=0}^{p_{m}-1} \prod_{j=1}^{m} f_{j}\left(\left[n p_{j} / p_{m}\right]-n_{j}\left[n p_{j-1} / p_{m}\right]\right) P(x+n)=0 \tag{4}
\end{equation*}
$$

There are p_{m} coefficients in this identity and we define $G_{m}(x)$ to be the periodic step function, with period unity, taking the value of

[^0]the i th coefficient in (4) on the i th subinterval of length $1 / p_{m}$ in $[0,1)$, it is easy to see that
\[

$$
\begin{equation*}
G_{m}(x)=\prod_{j=1}^{m} f_{j}\left(\left[p_{j} x\right]-n_{j}\left[p_{j-1} x\right]\right) \tag{5}
\end{equation*}
$$

\]

Such a function is defined for each natural number m.
For convenience in our future expressions we introduce two other sequences of functions of x suggested by (5).

$$
\begin{align*}
\nu_{j}(x) & =\left[p_{j} x\right]-n_{j}\left[p_{j-1} x\right] \tag{6}\\
\phi_{j-1}(x) & =f_{j}\left(\nu_{j}(x)\right)
\end{align*}
$$

It is clear that $G_{m}(x)=\prod_{j=0}^{m-1} \phi_{j}(x)$ and

$$
\begin{equation*}
\nu_{j}\left(x+1 / p_{j-1}\right)=\nu_{j}(x), \quad j=1,2, \cdots \tag{7}
\end{equation*}
$$

The functions $\nu_{j}(x)$ have a more obvious interpretation than that given in the above context. Indeed, these functions are merely the digits in the Cantor expansion (see [3, p. 7]) of $x-[x]$ relative to the p_{j}.

$$
\begin{equation*}
x-[x]=\nu_{1}(x) / p_{1}+\nu_{2}(x) / p_{2}+\cdots \tag{8}
\end{equation*}
$$

Writing $\mu\left\{\nu_{i} \leqq d_{i}, \cdots, \nu_{h} \leqq d_{h}\right\}$ for the Lebesgue measure of the set of $x, 0 \leqq x<1$, for which $\nu_{i}(x) \leqq d_{i}, \cdots, \nu_{h}(x) \leqq d_{h}$ we see that

$$
\begin{aligned}
\mu\left\{\nu_{1} \leqq d_{1}, \cdots, \nu_{m} \leqq d_{m}\right\} & =\sum \mu\left\{\nu_{1}=a_{1}, \cdots, \nu_{m}=a_{m}\right\} \\
& =\left(d_{1}+1\right)\left(d_{2}+1\right) \cdots\left(d_{m}+1\right) / p_{m}
\end{aligned}
$$

where the sum is taken over all m-tuples $\left(a_{1}, \cdots, a_{m}\right)$ for which $0 \leqq a_{j} \leqq d_{j}$. Also

$$
\begin{aligned}
\mu\left\{\nu_{j} \leqq d_{j}\right\} & =\mu\left\{\nu_{1} \leqq n_{1}-1, \cdots, \nu_{j-1} \leqq n_{j-1}-1, \nu_{j} \leqq d_{j}\right\} \\
& =n_{1} \cdots n_{j-1}\left(d_{j}+1\right) / p_{j} \\
& =\left(d_{j}+1\right) / n_{j} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\mu\left\{\nu_{1} \leqq d_{1}, \cdots, \nu_{m} \leqq d_{m}\right\}=\mu\left\{\nu_{1} \leqq d_{1}\right\} \cdots \mu\left\{\nu_{m} \leqq d_{m}\right\} ; \tag{9}
\end{equation*}
$$

i.e., the ν_{j} functions are statistically independent (see [2]).

Using (9) we give an easy proof of

$$
\begin{equation*}
\int_{0}^{1} \prod_{j=0}^{g-1} \phi_{j}^{\beta_{j}}(x) d x=\prod_{j=0}^{8-1} \int_{0}^{1} \phi_{j}^{\beta_{j}}(x) d x\left(=\prod_{j=0}^{s-1} \sum_{n=0}^{n_{j}-1} f_{j+1}^{\beta_{j}}(n)\right) . \tag{10}
\end{equation*}
$$

The second equality in (10) is clear and the first goes as follows.

$$
\begin{aligned}
\int_{0}^{1} \prod_{j=0}^{\infty-1} \phi_{j}^{\beta_{j}}(x) d x & =\int_{0}^{1} \prod_{j=1}^{\dot{m}} f_{j}^{\beta_{j-1}}\left(\nu_{j}(x)\right) d x \\
& =\sum_{a_{1}, \cdots, a_{;} ; \leq_{j}<n_{j}} \prod_{j=1}^{\dot{s}} f_{j}^{\beta_{j-1}}\left(a_{j}\right) \mu\left\{\nu_{1}=a_{1}, \cdots, \nu_{s}=a_{s}\right\} \\
& =\sum_{a_{1}, \ldots, a_{;} ; 0 \leq a_{j}<n_{j}} \prod_{j=1}^{\dot{b}}\left(f_{j}^{\beta_{j-1}}\left(a_{j}\right) \mu\left\{\nu_{j}=a_{j}\right\}\right) \\
& =\prod_{j=1}^{\dot{L}} \int_{0}^{1} f_{j}^{\beta_{j}-1}\left(\nu_{j}(x)\right) d x=\prod_{j=0}^{\theta-1} \int_{0}^{1} \phi_{j}^{\beta_{j}}(x) d x .
\end{aligned}
$$

When the f_{j} satisfy the conditions leading to (4) the identity (10) guarantees the vanishing of the integral of power products of the ϕ_{j} functions in which at least one exponent β_{j} is unity. In particular the functions $G_{m}(x)$ in (5) are orthogonal.

In the special case

$$
f_{j}(n)=(-1)^{n}\binom{n_{j}-1}{n}
$$

equation (4) becomes

$$
\begin{equation*}
\sum_{n=0}^{p_{m}-1}(-1)^{a_{0}+\cdots+a_{m-1}}\binom{n_{m}-1}{a_{0}} \cdots\binom{n_{1}-1}{a_{m-1}} P(x+n)=0 \tag{11}
\end{equation*}
$$

for P a polynomial of degree $\leqq n_{1}+\cdots+n_{m}-m-1$ and where, the a_{i} are defined by

$$
n=a_{0}+a_{1} p_{m} / p_{m-1}+a_{2} p_{m} / p_{m-2}+\cdots+a_{m-1} p_{m} / p_{1}, \quad 0 \leqq a_{j}<n_{m-j}
$$

The corresponding functions G_{m}, given in (5), are orthogonal and in the case where all $n_{j}=b \geqq 2$ are the functions t_{n} defined in [6]. In this case also the s_{n} functions of that paper are the ϕ_{j} functions here. Thus Theorem 3 of that paper, dealing with power products of the s_{n} functions, is contained in (10).

In the special case $f_{j}(n)=\exp \left(2 \pi n i / n_{j}\right)$ we have
$\phi_{j-1}(x)=f_{j}\left(\nu_{j}(x)\right)=\exp \left(2 \pi\left(\left[p_{j} x\right]-n_{j}\left[p_{j-1} x\right]\right) i / n_{j}\right)=\exp 2 \pi\left[p_{j} x\right] i / n_{j}$.
These are the orthogonal functions ϕ_{n} defined in [4]. Again (10) furnishes us with a proof of the orthogonality of power products of these functions. Indeed, if Φ_{n} and Φ_{m} are two such power products then $\Phi_{n} \bar{\Phi}_{m}$ is of the form $\phi_{0}^{\beta_{1}} \cdots \phi_{k}^{\beta_{k+1}}$, where $0 \leqq \beta_{j}<n_{j}$, and not all $\beta_{j}=0$ when $n \neq m$. We now need only observe that

$$
\sum_{n=0}^{n_{j}-1}\left(\exp \left(2 \pi n i / n_{j}\right)\right)^{\beta_{j}}=0 \quad \text { for } 0<\beta_{j}<n_{j}
$$

In particular when all n_{i} are equal to b the ϕ_{j} are the Rademacher and the generalized Rademacher functions [1] in the cases where $b=2$ and $b>2$, respectively.

References

1. H. E. Chrestensen, A class of generalized Walsh functions, Pacific J. Math. 5 (1955), 17-31.
2. Mark Kac, Statistical independence in probability, analysis and number theory, Carus Math. Monographs, No. 12, Wiley, New York, 1959.
3. Ivan Niven, Irrational numbers, Carus Math, Monographs, No. 11, Wiley, New York, 1956.
4. J. J. Price, Certain groups of orthonormal step functions, Canad. J. Math. 9 (1957), 413-425.
5. J. B. Roberts, Polynomial identities, Proc. Amer. Math. Soc. 11 (1960), 723730.
6. - Some orthogonal functions connected with polynomial identities. I, Proc. Amer. Math. Soc. 9 (1958), 364-370.

Reed College and
Birkbeck College, University of London

[^0]: Received by the editors November 16, 1962.
 ${ }_{1}^{1}$ This work was done under National Science Foundation research grant G19663.

