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In an earlier paper [5] we proved a general polynomial identity,

some special cases of which gave rise to sets of orthogonal functions

[6]. In this paper we recast this general polynomial identity into

such a form that it leads directly to a general class of orthogonal func-

tions containing, as special cases, those given in [ó] and also those

introduced in [4].

Let »1, n2, • • • be a sequence of integers each ¡^2 and let po = l

and pj = nin2 • • ■ n¡ for /^l. Then each integer «, Oún<pm, may

be written uniquely in the form

(1) n = ao + aipi + • • • + cu-ipm-i,       0 ^ a¡ < »y+1,

and we have

(2) a; = [n/pj] - nj+i[n/pj+i].

In [S] we proved the following: if H^I0l fiin)nt = 0 for O^fiSay

and P is any polynomial of degree â«i+ ■ • • +aw¡+m — 1 then

Pm—1      m

(3) E   ILfii[n/Pi-i] ~ nAn/p^Pix + *) - 0.
n-0    y—1

Since (3) holds for any integers «1, • • • , nm (each ^ 2) it holds for

ní, • • • , n'm, where nj =wm_,+i. Putting pj =n{ • • • nf and writing

// =/m_y+i we see that the conditions leading to (3) become conditions

leading to

p'm—l       m

11   II // i[n/pi-i] - n¡ [n/pj ])P(* + n) = 0
n=0     y=i

for the same polynomials P. Noting that p¡ =pm/pm-¡ we have the

following: if lln-o1 fjin)n' = 0 for 0^/^«,- and P is any polynomial

of degree ^«1+ • • • +am+m — 1 then

pm—1       fit

(4) H   TLfÁ[npj/pm] - n,[np^i/pm])Pix + n) = 0.
n-0    j=l

There are pm coefficients in this identity and we define Gmix) to

be the periodic step function, with period unity, taking the value of
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the ith coefficient in (4) on the ith subinterval of length l/pm in

[0, 1), it is easy to see that

m

(5) Gm(x) = HfjilPix] - »y[fVi*]).
y=i

Such a function is defined for each natural number m.

For convenience in our future expressions we introduce two other

sequences of functions of x suggested by (5).

... Vj(x) = [pjx] - HflPi-ix] .
(6) forj = 1, 2, • • • .

(bj-xix) = fiivjix))

It is clear that Gmix) = XlyTo1 4>ii%) and

(7) Viix + l/Pi-x) = Vj(x),      j = I, 2, ••• .

The functions v¡(x) have a more obvious interpretation than that

given in the above context. Indeed, these functions are merely the

digits in the Cantor expansion (see [3, p. 7]) of x— [x] relative to the

Pi-

(8) x-[x]= vxix)/px + vt(x)/pi + • • • .

Writing p {Vi = di, • ■ • , vk = dh.} for the Lebesgue measure of the

set of x, 0Sja;<l, for which vt(x) =¿¿, • • • , v%(x) =¿„ we see that

li\vx Û ii, ' • ' , Vm = dm} = Z ^{"i — ax, • • • , vm = am}

= (ái+l)(á,+ l) • • -(dm+l)/pm,

where the sum is taken over all »«-tuples (oi, • • • , am) for which

Oúaj-^dj. Also

At{"y Ú dj] = u{vi ^ «i - 1, • • • , vj-x á n¡-i - 1, v¡ ^ dj}

= «!••• My_i(dy + l)/pj

= (if +l)/ny.

Therefore

(9) p{vx Ú dx, ■ • ■ , vm = dm} = n{vx ^ dx} • • • p{vm á ¿m} ;

i.e., the Vj functions are statistically independent (see [2]).

Using (9) we give an easy proof of

(10) f * IT <f/(x)ix = II f \'/ix)dx ( = II Z fi+iin)).
J o   y-o j~oJ o \     y-o n-o /

The second equality in (10) is clear and the first goes as follows.
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f ' fí *%)dx =  f ' flfi'\vÁx))dx
J o  y-o J o  y-i

= H Hji,~\aj)p{vi - «i, • • • ,v, - a,}
«ii • ■ • i"«; oso,-<ny  y—1

H tlifriaMv^o,})
•ii • ■ ■ ■<•«; Oíay<ny    }—l

= n Vfi'Xviix^dx = n f\ß/ix)dx.
y-i •* o y-o «^ o

When the/y satisfy the conditions leading to (4) the identity (10)

guarantees the vanishing of the integral of power products of the <pj

functions in which at least one exponent j3y is unity. In particular the

functions GOT(x) in (5) are orthogonal.

In the special case

m = (-')■("'; ')
equation (4) becomes

(11)   H (-1)-h-..+*-i( )...( )P(x + n) = 0
n=0 \        00        / \     ßrn-1     /

for P a polynomial of degree ^«i+ • • • +nm—m — l and where, the

öj are defined by

» = ßo + aipm/pm-i + a2pm/pm-2 + • ■ • + am-ipm/pi,   0 ú a¡ < nm-j.

The corresponding functions Gm, given in (5), are orthogonal and in

the case where all nj = b^2 are the functions tn defined in [6]. In this

case also the sn functions of that paper are the <bj functions here. Thus

Theorem 3 of that paper, dealing with power products of the s„ func-

tions, is contained in (10).

In the special case fj(n) = exp(2wni/n¡) we have

<t>i-i(x) = fj(vj(x)) = exp(27r([/>yz] — nj[pj-ix])i/n,) = exp 2v[pjx]i/nj.

These are the orthogonal functions <pn defined in [4]. Again (10)

furnishes us with a proof of the orthogonality of power products of

these functions. Indeed, if <£„ and <3?m are two such power products

then 4>n$misof the form <Pol • • • 4>lk+l, where 0^ßy<»y, and not all

ßi = 0 when nj^m. We now need only observe that

n,-l

11 (exp(27TMÍ/%))Pí = 0       for 0 < /3y < »y.
n-0
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In particular when all n< are equal to b the <£y are the Rademacher

and the generalized Rademacher functions [l] in the cases where

b = 2 and b>2, respectively.
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