ON THE POINT SPECTRUM OF POSITIVE OPERATORS
HELMUT H. SCHAEFER!

1. Recently, G.-C. Rota proved the following result:

Let (S, 2, u) be a measure space of finite measure, P a positive
linear operator on L,(S, 2, u) with L;-norm and L.-norm at most one.
If o, |a| =1, is an eigenvalue of P such that aof =Pf (f&L,), then a?
is an eigenvalue such that a2| f| g2=P(] fl g, where f= | f] g.

It can be added that on| f[ g"=P(| fl g™ for every integer ; thus
Rota proved for a fairly large class of operators, without compactness
assumptions, a result known (and due to Frobenius) for positive
finite square matrices, and known for certain types of positive oper-
ators under conditions guaranteeing that the spectrum intersects the
circumference of the spectral circle but in a finite set (see Karlin [1,
pp. 933-935] for an excellent survey and some more general exam-
ples). Simple but typical examples of operators showing the spectral
behavior exhibited in Rota’s theorem are the permutation matrices
onl, (1Zp=< ).

The purpose of this paper is to extend Rota's result to a larger
class of spaces and operators. Apart from the particular type of un-
derlying space, the stringent condition in Rota’s theorem (supposing
that u(S) =1) is 7(T) =|| T||s=]| ||, 7(T) denoting the spectral radius
of T in L, which is implicitly assumed to be one in [2]. From this,
we can drop the total finiteness of u, the assumption || T|:=|| 7] and
the requirement that L, be invariant under T (T need indeed not
be defined on all of L, when u(S) is infinite). More generally (Theo-
rem 1), the result is true for positive operators on any complex func-
tion space E of type L,(S, Z, p) or C(X) (X compact Hausdorff),
whenever T"Y <y for some strictly positive linear form Yy € E’.2 This
class includes all quasi-interior positive operators on C(X), for which
other spectral properties were obtained in [3]. More particularly, for
positive matrix operators on I, satisfying the assumption above with
respect to some strictly positive linear form, the presence (assuming
r(T)=1) of a single unimodular eigenvalue which is not a root of
unity, implies that the entire unit circle is in the point spectrum of T
(Theorem 2).

The assumption that 7" <y for some strictly positive linear form,
in particular satisfied through || T]|1=1 in Rota’s theorem, is by no
means necessary for the conclusion; it is made to ensure that
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af=Tf (Ja| =1) implies |f] = T|f|. To see how close this comes to
what may be needed, we remark that every permutation matrix is
the direct sum of a (possibly infinite) number of summands satisfying
that assumption on a T-reducing subspace of /,,.

2. In this section, we formulate the results and their immediate
consequences. By (S, Z, u) we understand a measure space of finite
or infinite measure, and by C(X) the B-space (under the sup-norm)
of all continuous complex functions on a compact (Hausdorff) space
X. By a space of type C(X) we mean an ordered complex B-space
which is (simultaneously algebraically, topologically, and order) iso-
morphic to some C(X) (but not necessarily isometric), and likewise
for L,(S, 2, p) (1=£p< »). J denotes the set of all rational integers.

THEOREM 1. Let E be a space of type L,(S,Z,u) (1=p < ) or C(X),
and let T be a positive linear operator on E, with spectral radius 1, such
that T"Y =y for some strictly positive linear form on E. Then:

I{ Iaf= Tf, |a| =1, then or|f|g»="T(|f|g") for every nEJ, where
f=1flg

CoROLLARY 1. Under the conditions of the theorem, the point spectrum
of T on the unit circle consists either of a finite* number of (groups of)
roots of unity, or it is dense.

It is not difficult to see that Theorem 1 contains Rota’s theorem
as a special case. In fact, if ” TI|1§ 1, then T'Y =y (and conversely),
where y: f—[fdu is a strictly positive linear form on Ly(S, Z, p).

There is another class of positive operators satisfying the condition
of Theorem 1. A positive operator T on an ordered B-space E is called
quasi-interior [3] if there exists some No>r(T) such that TR\o)x is
a quasi-interior point of the positive cone K of E, for each 0#x&K;
x0EK is quasi-interior if the order interval [0, %] is a total subset of
E. (For more details on quasi-interior maps, see [3].)

COROLLARY 2. The assertion of Theorem 1 is valid for every quasi-
interior positive map on a space of type C(X).

ProoF. It is known (see, e.g., [3, Theorem 1, Corollary]) that for
any positive operator on C(X) with spectral radius r, there exists
a nonzero linear form ¢ =0 satisfying ny=T". Since for every
feC(X), and A>r,

WD) S L = vITRO,

ne=l

3 This is meant to include the case of empty point spectrum on | )\l =1,
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it follows that y is strictly positive when T is quasi-interior and »>0.
If T is an operator on a space l, (1=<p =< »), represented by a
positive matrix, we obtain the following stronger result.

THEOREM 2. Let T be a positive matrix operator on some space
lp 1=2p = ), satisfying the assumptions of Theorem 1. If T has a
unimodular eigenvalue which is not a root of unity, then the entire unit
circle belongs to the point spectrum of T.

On the other hand, it results from the proof of Theorem 2 that if
such a matrix has strictly positive diagonal entries, its point spectrum
on the unit circle can at most contain the number 1.

3. The proof of Theorems 1 and 2 is divided into several steps.
Unless any further distinction is needed, we denote by E any Banach
space of the type considered in Theorem 1.

(a) For any fEE and positive linear operator T on E, [ Tf I = Tl f ] .
Let s be a fixed element of S (or X, respectively). We have | Tf | (s)
=(Tf)(s) where f=fe® and 8= 0(s) is suitably chosen. Let f=g+i%,
g and % denoting the real and imaginary parts of f, respectively. Now
Tf=Tg+4iTh, and Tk(s)=0 since Tg, Th are real-valued elements of
E. Hence we have

Tj(s) = Tg(s) = T| g|(s) = T|f|(9)

since lg[ <|fl =|f], whence it follows that I Tf| (s5) < T|f| (s). s being
arbitrary, we conclude that | Tf| < T|f|.

(b) If af = Tf where 0% fCE and |a| =1, it follows that | f| =| T|
and hence, by (a), that |f| £T|f|. By assumption, there exists a
strictly positive linear form satisfying 7% <y'; hence ¢(|f|) S¢(T|f ] )
=TY(f])=¢(|f|) and, therefore, Y(T|f] —|f])=0. Since ¢ is
strictly positive, |f| = T|f|.

(c) Let Hy= {t: f(t)l >0}, and let F denote the vector subspace
of E whose elements are of the form |f| g, g¢EG, where G is the vector
space of all bounded Z-measurable or all bounded continuous func-
tions (accordingly as E=L,(S, Z, p) or E=C(C(X)), on H, Since
| Tlflg[ _S,||g||°°T|f[ , Fis invariant under T. The formula

We)(s) = [ 1) [T 1] g} (5) (s € Ho)
defines a positive endomorphism of G. Endowed with the sup-norm,
"G is isomorphic (even isometric) with a space C(Y), ¥ compact. This
is clear when E=L, (more precisely, one will consider the quotient
space of G modulo u-null functions), from the Gel’fand-Naimark

theorem; the same conclusion holds when E= C(X), but here, more
concretely, G is isomorphic with C(Y), where Y is the Stone-Cech
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compactification of HyCX. Thus in any case, we can associate with
f, satisfying |f]| =T| f|, a positive operator U on C(Y) such that
Ue=e (e the constantly-one function on ¥), and hence || U|| =1.

(d) We write f= | f| g, where g is well defined on H,; moreover,
|g| =e and ag= Ug since af = Tf by assumption. We identify G and
C(Y) in the spirit of the preceding paragraph. For each s& 7, the
mapping h—(Uh)(s) defines a positive Radon measure m,, of mass 1,
on Y. The remainder of the proof rests on the following lemma.

LEMMA. Let g&C(Y) satisfy [ gl =e, and let sE Y be arbitrary. If
ag= Ugi lal =1, then the support of m, is contained in {tEY: g(t)
=ag(s)|.

The proof of this lemma is elementary, and will be omitted. Now
let # be any integer. Since for fixed s, g(t) =ag(s) on the support of
m,, it follows that

@O = [ ) dm() = ),

s€Y, which proves that a"g"= Ug". Translating back into E, we
obtain a»|f|g»=T(|f|g*), completing the proof of Theorem 1.

(e) It remains to prove Theorem 2. Let 4 =(ai) be the matrix
representing the operator T, and let ax=Ax where x0 is a vector
in I, and @, || =1, is not a root of unity. It follows from Theorem 1
that |x| =4|x|. As in (c) above, we associate with 4 an operator
U on l.(H,) where H, is the set of subscripts on which the coordinates
of x are nonzero; more precisely, U is represented by the matrix
(ua), where wi = | x| ~'au| xi| for 4, kE Ho. Let x;= | x| v; for i€ H,,
v=(9;). Further, denote by I a set of representatives of the quotient
group of the group of unimodular complex numbers over the sub-
group {am:nC€J}. If F,={j€Ho:v;EaT'}, nEJ, the F, are dis-
joint sets whose union is H,.

From av= Uv it follows, as in the lemma in (d), that if v;=7 then
v;=ar for all j such that u;;>0 (4, J€E Hy). (In fact, the lemma can be
formally applied since v—(Uv); is a Baire measure on the locally
compact, discrete space H,.)* Denoting by x™ the “characteristic”
vector of F, in l(H,), we conclude that Ux®+D =x™_ Moreover, the
x™ are mutually disjoint and _{x®:nEJ}=e, the constantly-
one function on H,.

Now let B be any unimodular complex number. Letting

w = Z ﬂ"x(”))

neJ

4 At this point the assumption that T be a matrix operator is essentially used.
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it follows that Uw=pw, hence B is in the point spectrum of U. Set
y=(y;), where y;=|x.~|w.~ for t€Hy and ;=0 for ¢ H,. It is im-
mediate that Ty =8y whence the theorem follows.
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