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1. Recently, G.-C. Rota proved the following result:

Let (S, 2, p) be a measure space of finite measure, P a positive

linear operator on Lx(S, 2, u) with Li-norm and L„-norm at most one.

If a, | a\ = 1, is an eigenvalue of P such that af=Pf (JELx), then a2

is an eigenvalue such that a2|/|g"=P(|/|g"), where/=|/|g.

It can be added that an|/|gn = P(|/|gn) for every integer n; thus

Rota proved for a fairly large class of operators, without compactness

assumptions, a result known (and due to Frobenius) for positive

finite square matrices, and known for certain types of positive oper-

ators under conditions guaranteeing that the spectrum intersects the

circumference of the spectral circle but in a finite set (see Karlin [l,

pp. 933-935] for an excellent survey and some more general exam-

ples). Simple but typical examples of operators showing the spectral

behavior exhibited in Rota's theorem are the permutation matrices

on lp ilépé <*).
The purpose of this paper is to extend Rota's result to a larger

class of spaces and operators. Apart from the particular type of un-

derlying space, the stringent condition in Rota's theorem (supposing

that ju(S) = 1) isr(7,)=||T'||i-=||r||0<>, r(T) denoting the spectral radius

of T in Lx which is implicitly assumed to be one in [2]. From this,

we can drop the total finiteness of ¿u, the assumption || 2~"||x = 11 T\\a and

the requirement that Lx be invariant under T (T need indeed not

be defined on all of L„ when ju(5) is infinite). More generally (Theo-

rem 1), the result is true for positive operators on any complex func-

tion space E of type LPiS, 2, ju) or C(X) (A compact Hausdorff),

whenever T'i¡/^\¡/ f°r some strictly positive linear form ipEE'.1 This

class includes all quasi-interior positive operators on C(A), for which

other spectral properties were obtained in [3]. More particularly, for

positive matrix operators on lp satisfying the assumption above with

respect to some strictly positive linear form, the presence (assuming

r(T) = l) of a single unimodular eigenvalue which is not a root of

unity, implies that the entire unit circle is in the point spectrum of T

(Theorem 2).

The assumption that T'xp^ij/ for some strictly positive linear form,

in particular satisfied through ||r||i = l in Rota's theorem, is by no

means  necessary  for  the  conclusion;  it is  made to ensure  that
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• E' denotes the (topological) dual of E, V the adjoint of T.
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a/= Tf (| a\ = 1) implies |/| = T\f\. To see how close this comes to

what may be needed, we remark that every permutation matrix is

the direct sum of a (possibly infinite) number of summands satisfying

that assumption on a T-reducing subspace of lp.

2. In this section, we formulate the results and their immediate

consequences. By (S, 2, p) we understand a measure space of finite

or infinite measure, and by C(X) the 5-space (under the sup-norm)

of all continuous complex functions on a compact (Hausdorff) space

X. By a space of type C(X) we mean an ordered complex 5-space

which is (simultaneously algebraically, topologically, and order) iso-

morphic to some C(X) (but not necessarily isometric), and likewise

for LP(S, 2, p.) (1 ^p< <»). J denotes the set of all rational integers.

Theorem 1. Let E be a space of type LP(S, 2, p) (l^p< °°) or C(X),

and let T be a positive linear operator on E, with spectral radius 1, such

that T'\p^\pfor some strictly positive linear form on E. Then:

If af=Tf,  \a\ =1, then ocn\f\gn=T(\f\gn) for every nEI, where

/-I/|f.
Corollary 1. Under the conditions of the theorem, the point spectrum

of T on the unit circle consists either of a finite3 number of (groups of)

roots of unity, or it is dense.

It is not difficult to see that Theorem 1 contains Rota's theorem

as a special case. In fact, if ||r||igl, then T'\¡/^\p (and conversely),

where \¡/:f—*ffdp is a strictly positive linear form on Li(S, 2, p).

There is another class of positive operators satisfying the condition

of Theorem 1. A positive operator T on an ordered 5-space E is called

quasi-interior [3] if there exists someXo>r(r) such that TR(ko)x is

a quasi-interior point of the positive cone K of E, for each 0?¿xEK;

XoEK is quasi-interior if the order interval [0, Xo] is a total subset of

E. (For more details on quasi-interior maps, see [3].)

Corollary 2. The assertion of Theorem 1 is valid for every quasi-

interior positive map on a space of type CiX).

Proof. It is known (see, e.g., [3, Theorem 1, Corollary]) that for

any positive operator on CiX) with spectral radius r, there exists

a nonzero linear form ip = 0 satisfying np = T'tp. Since for every

fECiX), andX>r,

+if) i 5 - rtTRMf]>

• This is meant to include the case of empty point spectrum on | \| ■■ 1.



58 H. H. SCHAEFER [February

it follows that \¡/ is strictly positive when T is quasi-interior and r >0.

If T is an operator on a space lp (1 ^p^ °°), represented by a

positive matrix, we obtain the following stronger result.

Theorem 2. ieí T be a positive matrix operator on some space

lp il^pú °°), satisfying the assumptions of Theorem 1. // T has a

unimodular eigenvalue which is not a root of unity, then the entire unit

circle belongs to the point spectrum of T.

On the other hand, it results from the proof of Theorem 2 that if

such a matrix has strictly positive diagonal entries, its point spectrum

on the unit circle can at most contain the number 1.

3. The proof of Theorems 1 and 2 is divided into several steps.

Unless any further distinction is needed, we denote by E any Banach

space of the type considered in Theorem 1.

(a) For any fEE and positive linear operator T on E, | Tf\ S| T\f\.

Let 5 be a fixed element of S (or X, respectively). We have | Tf\ is)

= iTf)is) where f=feiS and 5 = 5(s) is suitably chosen. Let f=g+ih,

g and h denoting the real and imaginary parts of /, respectively. Now

T/= Tg+iTh, and This) =0 since Tg, Th are real-valued elements of

E. Hence we have

Tfis) = Tgis) g T\g\is) ^ r|/|(j)

since I g| ^ |/| = |/|, whence it follows that | Tf\ (5) á T\f\ (s). 5 being

arbitrary, we conclude that [ Tf\ S T\f\.

(b) If a/= Tf where O^fEE and |a| = 1, it follows that |/| = | Tf\
and hence, by (a), that |/| ^r|/|. By assumption, there exists a

strictly positive linear form satisfying T'-p^-p; hence ^(|/| ) ú^iT\f\ )

= 7^(1/1)^(1/ ) and- therefore> lK7"|/|-|/|)=0. Since yp is
strictly positive,  /J = T\f\.

(c) Let Ho= {t: \f(t)\ >0}, and let F denote the vector subspace

of E whose elements are of the form |/| g, gEG, where G is the vector

space of all bounded 2-measurable or all bounded continuous func-

tions (accordingly as E = LP(S, 2, u) or E=C(X)), on Ho- Since

I T'I/lgl â||g||ooT'|/|, Fis invariant under T. The formula

iUg)is)= |/(i)h{r|/U}(s) isEHo)

defines a positive endomorphism of G. Endowed with the sup-norm,

G is isomorphic (even isometric) with a space C(7), Y compact. This

is clear when E = LP (more precisely, one will consider the quotient

space of G modulo ju-null functions), from the Gel'fand-Naimark

theorem ; the same conclusion holds when E = CiX), but here, more

concretely, G is isomorphic with C(F), where Y is the Stone-Cech
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compactification of HoEX. Thus in any case, we can associate with

/, satisfying |/| = T\f\, a positive operator U on CiY) such that

Ue = e (e the constantly-one function on Y), and hence || i/|| = 1.

(d) We write /=|/|g, where g is well defined on Ho; moreover,

\g\ =e and ag= Ug since af= Tf by assumption. We identify G and

CiY) in the spirit of the preceding paragraph. For each sEY, the

mapping h-+(Uh)(s) defines a positive Radon measure m„ of mass 1,

on F. The remainder of the proof rests on the following lemma.

Lemma. Let gECiY) satisfy \g\ =e, and let sEY be arbitrary. If
ag= Ug, |a| =1, then the support of m, is contained in {tEY:g(t)

= agis)}.

The proof of this lemma is elementary, and will be omitted. Now

let n be any integer. Since for fixed s, git) =etg(s) on the support of

m„ it follows that

(Ugn)(s) = J  g"(l) dm,(l) = a»g»(s),

sEY, which proves that angn=Ugn. Translating back into E, we

obtain an|/|gn= ?X|/|gn), completing the proof of Theorem 1.

(e) It remains to prove Theorem 2. Let A = (aik) be the matrix

representing the operator T, and let ax = Ax where x^O is a vector

in lp and a, \a\ = 1, is not a root of unity. It follows from Theorem 1

that | x| =^4|x|. As in (c) above, we associate with A an operator

U on l„(Ho) where Ho is the set of subscripts on which the coordinates

of x are nonzero; more precisely, U is represented by the matrix

(uik), where «,-*= | x,-| _1aü| x*| for i, kEHo- Let Xi= \ x/\ t>< lor iEHo,

v=(vi)- Further, denote by V a set of representatives of the quotient

group of the group of unimodular complex numbers over the sub-

group {an:nEJ}- If Fn= {jEH0: VjEcfT}, nEJ, the Fn are dis-

joint sets whose union is Ho-

From av= Uv it follows, as in the lemma in (d), that il Ví = t then

Vj = œr for all j such that «,-,•>() (i,jEH0). (In fact, the lemma can be

formally applied since i>—>(t/z>)> is a Baire measure on the locally

compact, discrete space Ho-)* Denoting by x(n) the "characteristic"

vector of F„ in lx(H0), we conclude that f/x(n+1)=x(n). Moreover, the

xw are mutually disjoint and Z{x<~n): nEJ} — e, the constantly-

one function on Ho-

Now let ß be any unimodular complex number. Letting

w =Z ßnxM,
neJ

4 At this point the assumption that T be a matrix operator is essentially used.
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it follows that Uw = ßw, hence ß is in the point spectrum of U. Set

y—iyù, where yi=|*<|a'j for iEHo and y¿ = 0 for iEHo- It is im-

mediate that Ty = ßy whence the theorem follows.
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