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Modern axiomatics of elementary geometry has steadily followed

Hubert's program of elimination of continuity arguments. A brilliant

example of the success of this method is to be found in the book [l ]

by F. Bachmann which gives a unified treatment for geometries over

arbitrary fields of characteristic y¿2. On the other hand the author

has shown [2 ] that the plane axioms of incidence and order in Hu-

bert's system have very strong topological implications. Therefore

it seems natural to invert Hilbert's procedure and to try and char-

acterize euclidean (and hyperbolic) geometry by the topology of its

plane and some continuity properties of isometric mappings. This is

done in this note. We give first a topological formulation of the order

axioms and deduce the Hubert system from it. The topological ap-

proach allows some reduction of the axiom system. In the topological

space generated we introduce symmetries. Since we dispose of a

strong topological structure we can do with only part of Bachmann 's

axioms. Finally we derive the congruence axioms as theorems. The

main results are that completeness of the uniform structure and the

existence of an unique involutive automorphism for each line imply

the three-symmetries-theorem and the existence of angle bisector and

perpendicular bisector, i.e., of a transitive group of motions.

The topology of the plane x depends in large measure on the

cardinality K„ of it. For a = 1 the plane is the cartesian product of two

real number lines, it is two-dimensional. For ct>l it is totally dis-

connected and hence of dimension zero. Therefore it is interesting to

note that we may put a cardinality axiom last in our list and never

use it for the proof of congruence properties. This shows that the

important topological properties in plane geometry are completeness

and connectedness but not arcwise connectedness and dimension.

We shall freely use the language of elementary geometry where no

confusion can result.

1. The plane w is a set whose elements, the points, are denoted by

capitals. Certain subsets of it are "lines," they are denoted by lower

case Roman letters or by the symbols of the points defining them.

I. Axioms of incidence.
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1.1. To two distinct points there exists a unique line of which both

are elements.

1.2. There exists a line.

II. Axioms of order.

ILL The complement in ir of a line is the union of two disjoint non-

void sets.

These sets are the halfplanes of the line. The halfplanes of a line I

will often be denoted by 1¡ and 2¡.

Definition 1. Cis between A and B, written (ACB), if CE&B and

if there exists a line c through C (i.e., CEc) such that A and B are

in different half planes of c. The segment (AB) is the set of all points

X between A and B.

11.2. Px and P2 are in different half planes of a line I if and only if
iPiP2)r\l-¡¿0. (Pasch's axiom.)

11.3. iABC) implies non-iACB).

Proposition 1. A line contains at least one point.

To I (1.2) there exists¿Gl¡and BE2i (II.l) hence also C=AB(~\l

(II.2).

Proposition 2. There exist three noncolinear points.

With the notations of the previous proof there exists DEI ab-

A, B, D are not colinear, hence distinct (LI).

Propositions 1 and 2 are usually taken as incidence axioms.

Proposition 3. (ACB) implies (BCA).

The definition is symmetric in A and B.

Lemma 1. A line contains at least two points.

By Proposition 1, a line g contains a point A. By Proposition 2

there exist B and C not colinear with A. If either BEg or CEg the

lemma holds. If B and C are in different halfplanes of g, X = BC(~\g

exists (II.2) and is distinct from A. If B and C are both in the same

halfplane there exists D in the other one (II.l). Put Y = BD(~\g,

Z= CDC\g. Either Y^Z, or Y=Z but Y^A since then B, C, and Y,
are colinear.

Definition 2. A point A on a line I is of first kind if it is the inter-

section of / with a line PQ where PEli, QE2¡. A point is of second

kind if it is not of first kind.

Proposition 4. Let be A, BEL If B is of first kind there exists an X
such that (ABX). If B is of second kind there exists a Y such that

(A YB) bul no X such that (ABX). A line has at most two points of
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second kind. If B is of second kind on I, it is of second kind on any line

to which it belongs.

If B is of first kind and A EIpq there exists CE2pq. Either C = X

or, if C(£i, by II.3 one and only one of the sets iCP)C\l, iCQ)CM is

nonvoid and can serve as X.

If B is of second kind, assume that X exists. QEli defines a line

g = QB. For RE2i, R is in one of the halfplanes of g since REi- But

then by II.3 either iRA)r\g or iRX)(~\g is a point SE2t and BE QS
contrary to assumption.

It follows immediately that Lemma 1 can be amended to read: "A

line contains at least two points of first kind," hence a QEIab which

exists by II.1 may be taken as of first kind. The usual proof (e.g.

[2, Proposition 8]) that of three points one is between the other two

then carries over to our system of axioms. Hence a line has at most

two points of second kind.

If A is of first kind, the proof on page 6 of the 8th edition of Hilbert's

Grundlagen carries over to show that there exists F, (.4 YB). UA and

B are of second kind, the two points of Lemma 1 must be between A

and B.

The last statement of the proposition is immediate.

Remark. The use of axiom II.3 cannot be eliminated from this

proof. There exists a model of axioms 1.1, 1.2, II.1, II.2 which con-

sists of 5 points and 6 lines. Then Proposition 4 cannot hold. There

also exists a model which shows that 1.1, 1.2, II.1, II.2, and Proposi-

tion 4, do not imply II.3.

An analysis of the preceding proof shows that the following holds:

Theorem 1. For any model of a geometry satisfying axioms 1.1, 1.2;

II.1, II.2, II.3, the set of points of the first kind with the induced defini-
tion of lines forms a maximal submodel in which axioms 1.1 to 11.3 and

11.4. To A, B, exists X such that iABX) hold.

In the terminology of [2], 11.4 is a postulate rather than an axiom'

In [2] an axiom system was discussed based on LI, 1.2, II.1, II.2,

II.3, II.4, Proposition 1, Proposition 2, Proposition 3. The halfplanes

as a basis of the open sets generate a topology which is normal, uni-

formizable, and may be completed in a unique way such as to con-

serve the betweenness relation. Therefore we add

11.5. The half plane topology of ir is complete.
All results of [2] may be used for our system of axioms. If the

cardinality of ir is ft« all lines are ordered sets similar to a totally

ordered, complete, dense in itself, abelian group Ra of cardinality fc$a.

ir has a faithful model in a convex set SERaXRa of bounded co-
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ordinates [2, Theorem 9]. The boundary points of S in RttXRa are

in one-to-one correspondence to the classes of mutually parallel lines

[2, Theorem 8, Lemmas 5, 6].

2. III. Axioms of Symmetry.

111.1. To each line I there exists a mapping oiofir into itself different

from the identity map i.

111.2. ffi(TiP=P for all I and allPEir.

111.3. <nP=PifPEl.
111.4. ai maps halfplanes into halfplanes.

111.5. A product of symmetries <ra which leaves a line I pointwise fixed

is either a¡ or i (Hjelmslev's Axiom 3).

Definition 2. g is perpendicular to ligU) if aig = g but g^l.

Lemma 2. <rj is one-to-one and onto it.

By III.2 ai is an involution.

Lemma 3. <r¡ is continuous.

The inverse image of an open set is its image (111.2) and is open

(III.4).

Lemma 4. <si maps lines into lines.

By III.4 and Lemma 2, at maps the complement of the two half-

planes of a line into the complement of the union of two disjoint

halfplanes.

Lemma 5. (ABC) implies iaiA aiB oiC),

Follows from the definition, III.4, and Lemma 4.

Lemma 6. If A ¿¿aiA then the segment (Ao-¡A) contains a fixed point.

BxEiAffiA) implies oiBxEiAaiA) (Lemma 5). It is possible to

choose names such that ABx aiBx ffiA be an ordered sequence [2,

Theorem 1 and III.2]. By (transfinite) induction it is possible to

select an ordered sequence {B(} (<aa such that CB„ aiB,/) C iB, dB,/)

for u>v. The step from £ to $ + 1 is obvious. If ¿is a limit number, take

B(E(^r<( iBT (TiBr). The sequence {-B£} is bounded by all o~iB(. It is

possible to proceed so that no segment is contained in all (£„ aiB,/).

By completeness there exist a limit point which must be fixed under

<ri.

Proposition 5. o-¡P=P only if P El-

Assume <jiQ = Q for some QEI and let beP £ /. iPQ) is mapped into

itself by (Ti by 111.3 and Lemma 5. By Lemma 6 applied to a point
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in iPQ) and its image it follows that iPQ) contains a fixed point dis-

tinct from P and Q. Repeating the argument one obtains a dense set

of fixed points on all segments iPQ). Also, {X\ iXQP)} is mapped

into itself by <rj. Therefore it contains a dense set of fixed points by

the previous argument. The same holds true for {x\ iXPQ)}. <r¡ is

the identity on a set everywhere dense in ir, Lemma 3 implies a con-

tradiction to 111.1.

Corollary I. If A (£ I then iA <nA) C\ ly¿0. ai permutes the half-
planes of I. If oi leaves two points fixed on some g, then g = l.

Proposition 6. Through any point P there exists a unique perpen-

dicular to a given line I.

a. P(£l.P?¿o~iP by Proposition 5. The line Pa¡P is mapped into it-

self by <rj, hence Pa¡P'1.1. Any perpendicular to / through P must con-

tain <TtP, hence it is PoiP by 1.1.

b. P E I Assume first that there are two distinct perpendiculars

pil-l and p2A.l through P E l- Choose X E pi and F E Pi in the same
half plane lj. Then Y and <r¡Y are in different half planes of pi by

II.2 since (FPo-¡F) holds. Hence iXalY)r\iYalX) = 0. Q=iX<nY)
El and R = iYoiX)C\l exist by Corollary 1 and II.2. By the previous

argument Qj^R. But cr¡iXoiY) = ioiXY) by Lemma 5, hence Q = R

by III.3. Contradiction.
The existence of a perpendicular through P follows by a complete-

ness argument similar to that used for Lemma 6. On a line gy¿l

through P choose X and Y in different halfplanes. This is always pos-

sible. If g is not perpendicular to / we choose BiEiXatY). Let

B* = <TiBiPr\iX<TiY), it exists by II.2. It is possible to choose names

such that XBiBiffiY is an ordered sequence. As before one may con-

struct a Cauchy coa-sequence (B„B*)u<a,a such that (5P B*) EiB,B?)

for p>a. For the limit point B = B* it follows that oiBP = BP and

BP^l.

Lemma 7. o-<,ab = o-a<Tbffa.

For QE&ab one has <raoto,aQ = Q. o-affbOa^i since o-j^i. The lemma

follows from 111.5.

Lemma 8. bLa if and only if o-acrb = o-baa and a^b.

If bl.a then o;ab = o-ao~b<ra = <r&.

If cob = (Tb<?a then a a leaves ü\ja pointwise fixed. Hence crba = a. The

lemma follows by definition.

Corollary 2. a±b implies b±.a.
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Proposition 7. aLb implies oca±ocb for all c.

a upa a¿> — o-cO-aO-cO-cCTbcrc = crca-bO-ao-c = cr,cb(r,^

Remark. Minkowski geometry in the plane can be used to con-

struct models which show that Lemma 7 and Proposition 7 depend

essentially on axiom III.5. A strengthened form of Proposition 7

together with the other axioms implies III.5; see [l, §2.4, Satz 3].

Lemma 9. Two distinct concurrent lines a and b have no common

perpendicular.

Let p be a common perpendicular. If P = a(~\b EP, contradiction to

Proposition 6. If PEP then by Corollary 2, aA.p, bl.p, contradiction

to Proposition 6.

Lemma 10. If a, b are distinct concurrent lines then aa<¡b has exactly

one fixed point.

P = o-aabP is fixed. If Q = aaabQ for Q^P then aaQ = o-bQ^Q and

l = Qo-aQ is a common perpendicular to a and b. Then use Lemma 9.

A point P on a line I divides / into two rays lx and l2. The ray from

P which contains Q will also be denoted iP)Q. By II.2 one may take

any line g^l through P and define 2"i = /fMe, l2 = l(~\20. Two rays h

and ki issuing from the same point P form an angle ¿L(2i, ki). The

interior of the angle is the intersection LCU* of the half planes of /

containing kx and of k containing lx. An angle bisector of 2L Qi, kx) is

a line b such that or¡,2i = &i. By Lemma 6 an angle bisector must have

a ray in the interior of the angle. For three rays au bi, Ci, starting

from P we write (oi, bi, ci) if bi is in the interior of 2L(di, ci). The

linear order of rays can be reduced to that of points [2, §4].

Lemma 11. J» any finite product of symmetries 2 angle bisectors are

mapped into angle bisectors.

By Lemma 7, ffbl = k implies o-?l/2l='Zk.

3. The treatment of metric planes in [l] is based not in 111.5

but on the much stronger statement:

Theorem 2. A finite product 2 of symmetries which maps a ray h

onto itself is either a¡ or i.

The proof of the theorem follows different paths in the euclidean

and noneuclidean cases. The latter is simpler due to the absence of

homothecies. Since I need some parallel axiom in the proof of Theo-

rem 2 which itself is needed to establish the existence of a transitive

group of motions, up to now I am unable to decide whether there exist
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geometries with I.1-III.5 and not uniformly euclidean or hyperbolic.

However, I am able to show that Axioms I, II, III, and either one

of the statements of Axiom V, Proposition 8, or Proposition 9, imply

that IV. H is equivalent to the negation of IV. E. This will be the

subject of a separate paper.

An end is an equivalence class of first parallels. For our purposes

the most convenient formulation of the hyperbolic axioms is

IV. H. Two distinct ends define a line in w.

This line is unique. Otherwise for lines through points in the strip

bounded by two lines with identical endpoints at least for one direc-

tion the second end is determined by the first, in contradiction to

axiom IV.H.

An end can be represented by a ray that belongs to it. Let d be the

perpendicular from P = lC\k to the line hki. Then oJi = ki since o-<j ex-

changes halfplanes, conserves perpendicularity and maps ends into

ends. The last statement follows from Lemma 3 and the construction

of parallels by a limit process. Any bisector d* oí h and k\ maps lxki

and P onto themselves, hence also tr^idCMiki) = dCMiki and d* = d

by Corollary 1.

Proposition 8. Two rays have a unique angle bisector.

For two distinct points PiQ let be p and q the perpendiculars in P

and Q, respectively, to PC. Then <r pQpiq2 = p2qu hence X = piq2C\p2qi

EPQ. In terms of ends pi¿¿ qi since otherwise p\p2 would define more

than one line. Let be x the perpendicular from X to piqi, x is a per-

pendicular bisector of PQ, i.e., azP = Q. By construction, <rxpi= qi,

axX = X, hence by Corollary 2 aJ'Q^PQ and crxiPQr\)p=PQr\q.
As for the angle bisector one shows uniqueness.

Proposition 9. Two points have a unique perpendicular bisector.

Proof of Theorem 2. Without loss of generality one may assume

that 2 conserves halfplanes and that iP'ZXX) for all XEh where

PEl defines k (eventually replace 2 by a ¡2 or 2_1). We show that 2

has a dense set of fixed points. Let be d the bisector of hki, D = dCMiki.

Then2U = r>.
(a) Between two fixed points H, K of S on h there exists a third

one, e.g. the midpoint (Proposition 9).

(b) In the order on k there is no last fixed point. Let F be fixed,

fll through F is mapped into itself by 2. Let g be the angle bisector

of h and Pfi- g is invariant by Lemma 11 and Proposition 8, gC\fili

exists and is fixed. Its orthogonal projection R onto h is fixed and

satisfies iPFR).
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(c) Let iH\Ki) X </x <wa be a nested sequence of intervals defined

by fixed points of 2. The endpoints of the closure of OiH\K\) must

be fixed. This completes the proof.

4. Next, we assume

IV. E. Through a point not on a line there exists (a2 most) one parallel

to the line.

We retain the previous conventions about 2, h, ki, and P. Since

parallels are perpendicular to a common transversal (Proposition 6),

parallels are transformed into parallels by 2.

Proposition 9 holds for IV.E. Let p, q be the perpendiculars to PQ

in P and Q. For any XEpi let Y be the projection of X onto qi.

Define T=XQf~\PY (exists by 11.2) and tlPQ, TEt; and let
U=tC\PQ. Then <jtPQ=PQ. If atP^Q one may assume (UotP Q),
eventually by a change of names. atQ is the projection onto PQ of

crtY=<TtPTr\XY, hence iPatQU) or i(TtPQU), contradiction, t is the

perpendicular bisector.

If 2 and u are bisectors, then necessarily uAPQ and by construc-

tion, auT=T, hence t = u.

As before it follows that 2 is the identity if it has two fixed points.

Next we prove as a first step towards Proposition 8 : Angle bisectors

are unique. If a and b are bisectors of k and ki, so is aa b. Let M be the

midpoint of X and <r¡,A for some XEh, M* that of aaX and a0<7¡,A.

Hence MM* La. X and <r„X are in different half planes of MM*,

hence Xo-aXr\MM*^0 is a point of a. But this implies MM*

= XaaX, ffaX = o'bX and a=b.

As a consequence one has

Lemma 12. A ray cannot be invariant in a map ffacrb if a-¿b.

Proposition 8 can now be proved. The circle of center P and radius

iPA) is the set of all images ov4 for fixed A and ¿>3P. The order of

rays in P induces an order of points on the circle. We shall take care

to represent symmetry lines by their rays bx in the halfplane lp¿.

ov4 is a strictly monotone function of b, i.e., iPA bxK) implies

(AffbAab, A) on the circle. Since the angle bisector is unique, any ray

through P has at most one point in common with the circle. Assume

that iAo-b-AabA) holds. Define p0=PA, fo+i = <*¡>ov£x ; Qo=b', gx+i

= abab'qT- For limit numbers choose interior 2+ip\, qi) C HT<x interior

A-iPr, qi) such that the order is always iPxP^qi) lor ju>X, and

that no angle is in the interior of all 4-(£xffx)- By completeness

there exists a ray q such that ffb^q against Lemma 12. It now follows

easily by a completeness argument that the circle has one point in
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common with each ray and that the bisector exists.

If 2 leaves a ray invariant, then so do the perpendiculars to I

through Pi and the angle bisectors of / and k, and their bisectors

(Lemma 11) and so on. Since 2 must be continuous on the rays issu-

ing from P, one constructs a dense set of invariant rays. 2 must leave

all rays through P invariant. If 2 ?¿i, 2 may have no fixed point other

than P (Corollary 1), hence any line g not passing through P is

mapped into a parallel to g (the point X = gC\Sg, if it exists, is

mapped into VXEPX, i.e., X = 2X orPEg).
Let 2 = <ro(*)0-o(t-i) • • ■ <ram where all alii are concurrent at P.

Then Theorem 2 holds. It holds for k = l. By the preceding argument,

«raí1'' = Oj1' if we assume that 2 preserves halfplanes. If Theorem 2

holds for k — 1 then o-aw • • • <r0(2) = t or <ram, hence 2 = i or «r0u). The

second case is excluded since 2 preserves halfplanes.

Proposition 10. For three concurrent lines a,b,c there exists d such

that o,aObO,c = o-i.

Let d be the angle bisector of ex and o-ao-&Ci. Then o-<¡o-0o-i)cr(. = t or <rc.

The second case is impossible, oa(rb?£o~d by Lemma 10.

Let 2 = <r0(i) • • • <xam where all a(i) are perpendiculars to a line /.

Then Theorem 2 holds. Let 2P=P, and let pl.1 through P.
Since any perpendicular to p is transformed into itself by all <ra<o

(IV.E and Corollary 2), p is pointwise fixed under 2, Q.E.D.

As a consequence of the same argument

Lemma 13. If a and b ia^b) are both perpendicular to a line I then

aaab has no fixed point, since o-acrb = op would imply <ra<Tb = o'b<ra or a A.b.

Proposition 11. To three distinct lines a, b, c perpendiculars to a

line I there exists d such that Od = <rao-bo-c.

d is the perpendicular bisector of CEc and <TaObC. ffdO-ao-b = i is ex-

cluded by Lemma 13.

It follows that any 2 is the product of not more than three sym-

metries. By Lemmas 10 and 13, a 2 appearing in Theorem 2 is the

product either of one or of three symmetries. The only case remaining

is 2 = aa0TbO,c; a, b, c neither concurrent nor parallel and P $dU b\Jc.

No generality is lost if we assume that Q= bH\c exists. Since 2PÇ

=PffaQ it follows that QEPoaP and from o-aP = o-bo~cP and Lemma 12

that iPQoaP). By the same lemma, since oioco'bOciQ)P = ob(racbiQ)P

— ((?)P. b and c are perpendicular. In this case ob<rca = a since a is

the perpendicular bisector of P = i<Tb<r^)2P and ObO'J3. This implies the

invariance of R=PQC\a under ObOc, hence Q = REa, the three lines

are concurrent against hypothesis. Theorem 2 is completely proved.
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5. The Hilbert axioms of congruence now become theorems on

symmetries.

Definition 3. Two sets S and S' are congruent (S-=S') if there exists

a product of symmetries 2 such that 25=5'.

C.l. To any segment (XY) and any ray ai starting from a point A

there exists BEai such that (AB)^(XY).

B = a<i(rmY where m is the perpendicular bisector of (AX) and d

the angle bisector of <(<*i, amXY).

C.2. The congruence relation is transitive.

C.3. If (ABC), iA'B'C), (AB)^iA'B'), (BC)S(S'C), then
iAC)=iA'C).

A'B'=-2AB, B'C' = -L*BC. iA'B'ZC) and &*AB'C) imply
2-12*(£) C= iB) C. By Theorem 2,2=2* or 2 = aAB2*. In both cases,

2C=C
C.4. To any angle 2<.(fti, ki) and any ray hi there exists ki in either

half plane of h' such that 3_(fti, ki) = <(fti, hi).
Proof like that of C.l.
C.5. ¿L(ft,, ki)£¿$iki, hi).
Symmetry at angle bisector.

C.6. Let AxBxC be three noncolinear points. If iAB)^(A'B'),

(AC)^(A'C) and ^CAB^^C'A'B' then ¡LABC^iLA'B'C.
There exist 2 such that 2(^15) = (A'B') and 2CGhalfplane of A'B'

containing C. Also there exists 2', 2'(.4 C) = (A'C) and mapping the

halfplane of B into that of B\ Finally there is 2* with maps rays:

2*(A)B = (A')B',2*(A)C=(A)C. By Theorem 2, 2^2'=2^2* = i.
Hence 2C= C and ^.ABC-= 2+A'B'C. This shows:

Theorem 3. Euclidean and hyperbolic geometry are the only geom-

etries which satisfy axioms 1.1,2; 11.1,2,3,4,5; III.1,2,3,4,5, IV.H or
IV. E, and V.

The cardinality of tr is the continuum.

The "propositions" proven have been chosen so that Bachmann's

axioms in [l, p. 24 (33), 201, 216 (also p. 126, Satz 2)] can be verified

immediately.
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