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1. Introduction. A tree is a partially ordered system (A, 5Í) such

that for every xEA the set Px = {y| y <x} is well ordered by ^. The

rank p(x) of x is the order type of Px (this is an ordinal number).

The rank p(T) of the tree is the least upper bound ol p(x), xEA. For

every ordinal a, Ra(T), or simply, P«, is the set of all elements of rank

a.

A subset A' of A is full if for every xEA' we have PXQA'; if A' is

full then the rank of an element in the subtree (A', ^ ) is the same as

its rank in (A, ^ ). A node of T is a subset N of A of the form {x | x EA

and Px = Py} for some yEA. Clearly all elements of a node A have

the same rank, and this ordinal is called the rank of N.

A path of T is a subset of A which is full and linearly (totally)

ordered by Ú - Obviously every path is well ordered by Ú, every

path can be extended to a maximal path and every totally ordered

subset of A can be extended to a path.

A normal Ra tree is a tree (A, ^ ) of rank wa+i having the following

properties :

(Nl) P{ is of power N„ for all £, 0 <£ <wa+i.

(N2) Nodes of rank £+1 are of power Na and nodes whose rank

is a limit ordinal (including 0) are of power 1.

(N3) If x£^4 and p(x) <i7<coa+i then there is a yER* for which

x<y.

(N4) Every path is of power <fc$a+i. (Or, equivalently, every path

has order type <wa+i-)

(N5) If A' is a path of power <&a then there is an x£.4 such

that y^x for all yEA'.

Normal fc$„ trees are of power i$a+x- In the case Ka = Xo condition

(N5) follows from (N3) and the notion of a "normal tree" coincides

with Kurepa's notions of "suites distinguées" [l] and "suites (s)"

[2]. (In [l] nodes of limit rank are of infinite power; no proposed

theorem is affected by this difference.) We add (N5) to get a non-

trivial generalization to higher powers.

The existence of normal N„ trees implies that t^i = fc$a for all £ <a.

Indeed (N2), (N3), and (N5) imply that |PB£| (the power of PB{) is

N«£ while by (Nl) |PB{| =N<*. On the other hand if for all £<a we

have ^{ = ^,1 then {tf„ is regular by the König-Jourdain theorem and
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the existence of normal Ha trees follows from [4]. The generalized

continuum hypothesis implies that if Ka is regular, then H^£ = Ha for

£ <a, hence it implies the existence of normal H„ trees for regular Ha.

Normal Ho trees, whose existence has first been proved by N.

Aronszajn2 are closely connected with the conjecture of Souslin.

This conjecture is equivalent to the statement that every normal Ko

tree, (A, g), has Hi pairwise incomparable elements, that is, there

is a subset A' oí A of power Hi such that x<y and y<x for all

x, yEA'. All known examples of normal So trees have this property.

Consequently, Souslin's conjecture follows from the conjecture that

any two normal Ho trees are isomorphic. The problem whether or not

this is the case is Kurepa's "premier problème miraculeux" [l].

Given any two normal Ka trees, Ti = (A,, Si,-}, i=l, 2, and any

£<toa+i, the trees obtained by "truncating" Fi and T2 at the "£th

level" are isomorphic; that is, letting S^T,) be the set of all elements

of rank <£ in Ti, the trees P;(?) =(5,{(Fi), :£<), i = l, 2, are iso-

morphic. Moreover if £árj<coa+i then any isomorphism between

7\(£) and T2i£) can be extended to an isomorphism between Pi(t?)

and T2irj). (For the denumerable case, cf. [l, p. 102].) One might be

tempted by this to conjecture that any two normal Ka trees are iso-

morphic, nevertheless the answer, given here, to the problem is nega-

tive:

Theorem. If N„£ = Na, for all £<a, then there are exactly 2l*<*+1

different isomorphism types of normal H<, trees.

For two given normal He trees P,-, i=l, 2, the set of isomorphisms

from Pi(£) onto T2i£), where £ varies over all ordinals <wa+i, forms

a tree if the partial order relation is taken as the relation of extension.

This tree satisfies (N3) and (N5). The theorem implies that there are

Ti, i—1, 2, for which this tree satisfies (N4).

The proof of the theorem which is presented here shows only that

there are at least Ha+2 different isomorphism types of normal Ka trees.

However, by an additional argument (not given in this paper) the

full theorem can be deduced from the weaker one without using any

part of the general continuum hypothesis.

The theorem follows readily from the following:

Main lemma. If K^ = Ka, for all £<a, then one can associate with

every subset X of wa+i of power Ka+i a normal K„ tree, 7\A), so that

TiX) and P(X') are not isomorphic if \Xr\X'\ <K„+i.

The theorem follows immediately from the main lemma and a re-

1 Published in [l, p. 96]. A reference to this result is overlooked in [4].
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suit of Sierpiñski [3, p. 448] which states that there is a class C oí

subsets of ua+x such that | C\ = &a+2, \X\ =i$a+i for all XEC and

| AHA'| <«a+1 for all X, X'EC which are different.

2. Sequential trees. In what follows we consider sequences of the

form (so, • • • , sx, • • • )x<a, where a is any ordinal (including the

empty sequence for which a = 0). If s=(so, • • • , S\, ■ ■ ■ )x<a then

l(s) =a, l(s) is the length of s. If / is a sequence and ß<l(t) then tß is

the /3th member of t, that is, t = (to, • • ■ , tp, ■ • ■ )ß<ut)- If 5 is a se-

quence then the restriction of s to ß, s\ ß, is the sequence t such that

Z(f) = Min(/(s), ß) and ty = sy for all y<l(t).

A sequential tree is a tree (S, ^ ) which satisfies the following con-

ditions:

(ST1) S is a set of sequences.

(ST2) If sES then s\ßES for all ß^l(s).
(ST3) s^s' iff for some ß we have s = s'|p\

It is easily seen that every sequential tree is a tree in which p(s)

= l(s), the single element of rank 0 is the empty sequence, and nodes

of limit rank are of power 1. Conversely, if T=(A, í¡) is a tree in

which nodes of limit rank (including 0) are of power 1 then T is

isomorphic to a sequential tree. Namely, given any xEA associate

with it a sequence s whose length is p(x) such that, for all a<p(x),

Sa is the unique element of rank a + 1 which is ^x. In particular

every normal Na tree is representable as a sequential tree.

Let Sa be the set of all sequences s satisfying the following condi-

tions:

(51) lisXwa+i-
(52) All the members of s are ordinals <«„.

(53) {c^SaT^O} is of power <Ka.

Defining " ^ " according to (ST3) it is immediate that Ta = (Sa, á )

is a sequential tree.

Lemma 1. If, for all £<a, fc^f = Na then the tree Ta satisfies the con-

ditions (Nl), (N2), (N3), and (N5).

Proof. Ta satisfies (N2) and (N3) for all a. (N5) is satisfied if Na

is regular and (Nl) is satisfied if ^a£ = ^„ for all £<a.

Ta does not satisfy (N4) since the subset of S consisting of all

sequences 5 for which 5^ = 0 for all ß<l(s) is a path of power fc$a+i-

Moreover, we have the following lemma.

Lemma 2. If, for all £<ot, ^i = ^a then every full subset of Sa of

power KK+i contains a path of power #a+i.

Proof. Let S'çsa be a full subset of power Ka+i- Let S'iß) be
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the subset of all sequences s of S' for which {7¡ sy5¿0} is of order type

<ß. By (S3) S' = S'iwa). If ß is a limit ordinal then S'iß) = \J1<ß S'iy)

iS'iO) = 0). Thus 5'(cüa) = U^<Ua 5'(j8) and consequently for some

first £ S'i£) is of power Ha+i. £ cannot be a limit ordinal hence

£ = (£—1)4-1. |S'(£ —1)| = Ka, hence, for some ij<cúa+i, lis) <r¡ for

all s£S'(£ — 1). On the other hand, since (Nl) is satisfied (by Lemma

1), {í|í£'S'a and lis) ^ij} =Urs,Pr(Pa) is of power áHa, hence

S"= {s\ sES'iO and /(s) >ij} is of power Ha+1. Obviously S"ç:S'(£)

— S'(£—1) hence {t| ^t?^0} is of order type £—1 whenever s£5".

Again by (Nl) the set {s| ir¡ + l) }íes" is of power Ha, hence there is a

t of length 77 + 1 such that S'"= {s\sES" and s\ir¡ + l)=t} is of

power Ha+i. We claim that if s ES"' and r]^j<lis) then s7 = 0.

Otherwise syy¿0 and the order type of the indices of nonzero mem-

bers of u = s\y is smaller than that of nonzero members of s, which is

£ — 1, thus {yIm^O} is of order type <£ — 1. Since S' is full uES',

hence «££'(£ — 1) but liu)=y^r¡ contradicting the choice of ij. It

follows now easily that S"' is totally ordered (its members are of

length gïiji they coincide for ordinals <r¡ and are 0 from -n on). Since

S' is full {s| y}„ss"', 7<<oa+1is a path of power H«+i contained in S'.

3. Composition of trees. If s is a sequence and A is a set of ordinals

then by s\ X we mean the subsequence of s obtained by letting the

index range over X only; that is, if X= {a0, • • ■ , ct\, • • • }, where

ax<aM for \<p, then s|X=(sao, • • • , s„x, • • • )ax<iw, is\X)\ = say

We define s\ X to be s\ Qis) —X) where lis) —X is the complement of

X relative to lis). If s\ X = sr and s\ A = s2 then we write 5 = 5' *x s2,

(e.g., if s1 = (0, 1 ), s2 = (3, 3, 4) and X = {0, 2}, then í = s1 *x s2, where

5= (0, 3, 1, 3, 4)). It is easily seen that for every s1, s2 and X there is

at most one 5 such that j = s1 *x s2.

Ii S1 and S2 are sets of sequences then we define Sl *x S2

= {s1*zi,|i1G51l s2ES2}. If Tl=(S\ á> and T2=(S2, á) are

sequential trees then T1 *x T2 is defined as the sequential tree

(5'*i5', a).
The following properties follow easily:

(Cl) If s, tES1 *x S2 then s^t iff s\X^t\X and s\Xút\ X .
(C2) For every £ the mapping s—*(s\ X, s\ X) is a one-to-one map-

ping of RiiT^x T2) onto R^T^XR^iT2), where £1 is the order

type of i;f~\X and £2 is the order type of £ — X.

(C3) If P1 and T2 are sequential trees of rank o)ß so is P1 *x T2.

Remark. The isomorphism type of the compound tree depends

only on the isomorphism types of the factors and on the set X but

not on the particular representation of the trees as sequential trees.
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Lemma 3. Let T1 = (S1, á) and T2=(S2, Ú) be sequential trees of

rank coa+i and let X be a subset of ioa+i, then :

(I) If both T1 and T2 satisfy any of the five conditions (N/),

/= 1, • • • , 5, then U= T1 *x T2 satisfies the same condition.

(II) If IAI =Na+i and T1 satisfies (N4) jo does U.

Proof of (I). For every £<coa+i let £1 be the order type of JHX

and ¿2 the order type of £ — X.

(Nl) If ¿>0 then either £i>0 or £2>0, hence if T1 and T2 satisfy

(Nl) it follows from (C2) that U satisfies it as well. (Note that in

every sequential tree Po has one member, namely, the empty se-

quence.)

(N2) A node of U of rank £ + 1 is of the form A = {s\ sES1 *x S2,

¿(s) = £+l and s|¿ = /}, where t is some fixed sequence of S1 *x S2

whose length is £. Putting t1 = t\ X and t2 = t\ X it follows that ^ES1,

t2 E S2 and that A1 = {s\s E S1, lis) = & + 1 and i|& = i1}

and A2= {s\sES2, l(s) = £2+l and s\& = t2} are nodes of T1 and T2

of ranks £i + l and £2 + 1, respectively. If £E Athen A= {s1*xt2\s1EA

and if £EX then A={tl*x s2\s2EA2}. It follows that either \A

= \A1\ or \A\ =\A2\. Thus if (N2) holds for both P1 and T2 we
have IA \ =^a; nodes of limit rank have power 1 since U is a sequen-

tial tree, hence U satisfies (N2).

(N3)_If sERt(U) and £g7j<coa+i then s1 = s\XER^T1) and

s2 = s\ XERh(T2). If both Pl and T2 satisfy (N3) then there are

PERn^T1) and t2ERV2(T2) such that sl£tl and s2út2. From (C2)

and (Cl) it follows that t = tl *x t2ERn(U) and sût.

(N4) If both P1 and T2 satisfy (N4) so does U. This follows from

(II) of the present lemma, and the fact that either X or wa+x — X is

of power N„+i and T1 *x T2=T2 *(Ba+1-x> T1.

(N5) Let A be a totally ordered set in U of power <K«. Let £ be

the least upper bound of the ranks of the members of A. Then

A1 = {s IX} ,e a and A2 = {s \ X} ieA are totally ordered sets in P1 and

T2, respectively, and £1, £2 are the respective least upper bounds of

the ranks of the members of A1 and A2. If (N5) holds for both P1

and T2 then there are fES1 and t2ES2 such that t^s lor all sEA1

and t2£ts for all sEA2. Moreover, as is easily seen, i1 and t2 can be

chosen to be of ranks £1 and £2, respectively. From (C2) and (Cl) it

follows that t = tl *x t2ER((U) and t^s for all sEA.

Proof of II. Let A be a path of U of order type £. {s| X},eA is a

path of P1 of order type £1. If £ïîcoa+i and | X\ =Na+i then ?i^wa+i.

Thus if every path of Pi is of order type <wa+i the same holds for U.

4. A class of normal trees. The following assumptions are made
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throughout this section: a is such that, for all £ smaller than a,

K£f = Ka. Ta = (Sa, g) is the sequential tree defined by (S1)-(S3) of

the previous section. P is some fixed normal H« tree. For every

FÇcua+i we define P(F) to be P *y Ta. A is a subset of coa+i of power

Ha+iand TiX) = {A, g).

Lemma 4. P(A) is a normal H„ tree.

Proof. By Lemma 1 Ta satisfies (Nl), (N2), (N3) and (N5),

hence by Lemma 3 (I) these hold also for TiX). Since (N4) holds for

Pand | X\ =Ha+i (N4) holds for P(A) by Lemma 3 (II).
Our aim is to show that as X varies over subsets of wa+i the trees

TiX) satisfy the properties mentioned in the main lemma of the

introduction. This is done in the following two lemmas.

Lemma 5. There is a full subset B in TiX), of power H«+i, such that in

the subtree (5, ^) every node N is of power 1 whenever the rank of

N,piN),ist+l and ÇEX.

Proof. Put 5= {s|s£yl and sx = 0 whenever X£A}. It is easily

seen that 5 is a full set of power Ha+i iB = A'*x 0a, where

F =(.4', :£) and 0a is the path of P consisting of all sequences of

length <coa+i which are always 0. If s and t are members of 5 of

length £+1 such that s | £ = t | £, then, if £ £ A we must have S{ = t( = 0

and consequently s = t. Thus every node of rank £ + 1, where ££A

is of power 1.

(Since every full subset forms a sequential tree the same is trivially

true for nodes of limit rank.)

Lemma 6. Let X'Qua+i, and assume that there is a full subset, 5, of

A, of power Ha+i, such that every node N in {B, ^) for which p(A)

= £+1 and ££A', is of power 1. Then \ XC\X'\ =Ha+i.

Proof. By contradiction. Assume that | XP\X'\ <Ha+i. There is

an ordinal »?<ioa+i such that Xr\X'Qr¡. Since RviTiX)) is of power

H« there is a i£P,(P(A)) such that the set {s|s£5, and t^s or

s^t} is of power Ha+i. This set is also full and it determines a sub-

tree in which every node A^ such that p(A) = £+1 where ££A'—X

is of power 1. (This is so since every node of rank ^17 is of power 1,

while for X>t? if X£A'-A then X£A'.) Therefore without loss of

generality we can assume that XC\X' = 0.

If s and / are two incomparable elements of 5 (i.e., s¿/ and t^s)

then there is a first £ such that £<¿(s)> lit) and s^h. The sequences

s\ (£+1) and i|(£+l) are two different sequences belonging to a

single node of (5, ^) of rank £ + 1, hence ££A' and consequently
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£ EX. This shows that whenever s and / are incomparable elements

of B then s\ X and t\ X are incomparable elements of P. Now con-

sider B'= {s\ X},eB. B' is a full subset of Sa. If \B'\ <t&a+1 then for

some tEB' there is a subset D of P such that | P | = KQ+i and s| X = t

for all sED. It follows that P cannot contain incomparable elements.

Hence, it is totally ordered, contradicting the property (N4) which

holds for P(A). If | B'\ =Ka+i then by Lemma 2 it contains a path

D', of power Ra+x- The set D of all sequences 5 for which s\ XED' is

again of power N„+i and has no incomparable elements, which yields

the same contradiction.

From Lemmas 5 and 6 it follows immediately that if Y, Y'Qua+x,

I y j = I Y'\ =Na+i and \YÍ\Y'\ <Na+i then T(Y) and T(Y') are not
isomorphic. Thus our main lemma is proved, and this, as indicated

in the introduction, implies the required result.
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