GENERALIZED LAURENT SERIES FOR SINGULAR
SOLUTIONS OF ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS!

MURRAY WACHMAN

Introduction. Let L be a linear elliptic differential operator with
analytic coefficients in a region R of E,. Let L be the adjoint of L.
This paper extends the previous work of F. John? on representation
of a solution u of L[u]=0, where « has a singularity of finite order.
A representation is developed here for a solution v of Z[v] =0, where v
has an isolated essential singularity. This representation is a generali-
zation of the Laurent series. Here the summation over the #nth powers
is replaced by summation over the nth derivatives of a fundamental
solution K (x, 2), of the operator L. The representation in general is
not unique.

Uniqueness of a suitably normalized representation is proved for
the case in which L is homogeneous with constant coefficients. This
gives rise to a theorem which for the three-dimensional Laplace opera-
tor reduces to the Maxwell-Sylvester theorem.?

The general case. Let 9(x) be a solution of Z[v(x)]=0, which has
an isolated essential singularity at x =1, an interior point of the real
region R, but is otherwise regular in the deleted region R. Let L be
of order m.

Let DCR be an open annular domain about the point x=1y. Let
Si be the sphere bounding the outer ball B; of D and let S; be the
sphere bounding the inner ball B; of D. Both B; and B; have the
point x=1y as center and B;> B,. We further assume that B; is so
small that K(x, z), a fundamental solution of L, is analytic for x>z
in B1.

TaEOREM 1. For 2ED, v(z) permits the following representation:

0

1(2) = w(@) — 2, 0. ADK(x,32) ,
y=0 |i|=rp Ty
where w(z) is analytic for 2E B, A; are constants depending on S,,
|’Ll =’I:1+i2+ L +’i1. and
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1T am indebted to Professor Fritz John for suggesting this problem.
2 See [1].

8 See [2, pp. 514-521].
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dx1dx2 « + « Jxin
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Proor. We know that there exists a ball B;C B, with center at
x=1v such that K(x, z) has a Taylor series expansion with respect to
x, about x =17, for x € B;, 2&D. Let S; be the sphere bounding B; and
let R be the annular region defined by .S; and S;. R has the boundary
B=S,US;. Applying Green’s identity to the operator L over R we
get for zED:

o(s) = f M[K(x, 3), v(x)]dS,
) ’
= M[K(x’ Z), 'v(x)]dS, - M[K(x) Z), v(x)]dS,,

z€8y zE€ESg

where M is a bilinear operator, and dS; denotes integration over the
surface of the boundary.

w(z) = M[K(z, 2), 9(x)]dS.

z€8,

is clearly analytic for 2E D, since x €S and therefore x 2.
For z2E D, xE€S;, K(x, 2z) has the Taylor series expansion about
x=y:

o 1 i
K(x) z) = Z Z ’—T (x - 3’) DvK(y’ Z),

yu=0 |t]|=p

where D{K(y, 2)=DiK(x, 2)|smy; (x—9)i=(x1—y1)% + + + (Xa—yn)";
and ¢!=(4;!) - - + (4,!). Equation (1) then becomes:

d 1 i
@ =0 - [ U5 T~ 6= 'DiKG, 00 | 5.

y=0 |i|=r T:
Since M is a linear operator and the series is uniformly convergent:

N T
0 = o) = £ 2 = DIKOy) [ Mls = % (ol

p=0 |i|=p 7.

Let

1
4= — M[(x — 3)*, o(x)]dS-.

1:! zES;

A4, is a constant. We then have as a final expression:
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had i
2 2(2) = w(z) — 22 2. ADK(y, 2).
=0 |§|==p

It would be desirable to normalize equation (2), i.e., to obtain a
form of equation (2) in which the 4; are independent of the spheres S,
and S;. Equation (2) would then be unique and hold for any z>7y,
3E By; because for any such z, we can find a B; and a B; with radius
so small that the required Taylor series expansion for K(x, z) will
exist.

We shall succeed in giving such a normalization of equation (2)
only for the special case of L homogeneous with constant coefficients,
ie.,

3) L= 3 D,

lij=m

where the b; are real constants. Let the coefficient of

D= —
a7
in I be by. Since L is elliptic s is not zero. We know that there exists
a fundamental solution of I of the form K(y—x),* we shall use this
fundamental solution in Theorem II.

THEOREM 1.5 Let v(x) be a solution of T[v(x)]= 2 ji=m b:D0(x) =0
for xEB,, x#y. Let v have an isolated essential singularity at x=1y.
Then there exists a representation of v(z) of the form:

o(@) = w@) — 3 5 ADK(y—2), forsyzE By,

y==0 |g|==p

where A, =0, whenever D', contains D] =0m/dy?" as factor (i.e., whenever
si=m); and this representation is unique.

Proor. For z7#y, 2ED, using equation (2) we can write:

had k
@ o(2) = wi(e) — 20 20 AeD,[K(y — 9)].
y==0 |k}=p
We will prove that each operator term ki, 4:D% in the above
series, with y2m can be written in the following form when it is
applied to any solution « of L[u]=0.

¢See [1, pp. 298-303].
& This is a generalization of the Maxwell-Sylvester theorem for the case of the
three-dimensional Laplacian. See [2, pp. 514-521].
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) > ADqu= Y, J,Du,
|k|=r |8|=v; 8;<m

where J, are constants. We will also prove that equation (5) is unique.
From equation (3) we have:

©) D’u=-1—[f_ > b‘_Di] __ oy bDw

br il mm; $T Vilmmiiel DI

The operator term 2 xj-» A1xD* can be written as a polynomial
in powers of d/9x,, i.e.,

Q) Z Ay D+ = Z Z Gu+JD" s
|kl = J=0;j+|pl=r;p1=0 p

where G,,; are constants,® p a non-negative integer which is the
highest order of /0%, in k= AxD*. For solutions % of L{u]=0
and for p =m, using equation (6), we can reduce the pth order poly-
nomial operator in d/0x; in equation (7) to a (p—1)th order poly-
nomial in d/9x;. It is then seen that after p —m -1 steps equation
(7), when applied to solutions u of L[«]=0 reduces to:

m—1
(8) Z ArD*u = E Z HI‘+JD“ _u = E J:D*u,
1k|=» §=0;j+|pl=riu1=0 p |8|=7;8:<m

where H,,;, J, are constants.
We now prove uniqueness. Suppose we had the two identities, for
all » with Z[z]=0:

(5) > ADu= Y, J,Du
k|=» [8]=p;8:<m

and

) >, AwD'u = Y, J!Dw;
K| mp le|=v;81<m

then

(10) Llul = > (J.—J)Du=0.

l8]=p;81<m

Equation (10) holds for all solutions % of L[«]=0. Consider solu-
tions u of the form:

(1) U(@) = flmr)enock-- o,

where the o; are constants. For a given set of a;, L[u(x)]=0 is an
mth order differential equation in the variable x;, and there are m

¢ The index p+j=(m+4, w2, * * * ) ).
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independent solutions, f(x1). If we apply L to u(x) as defined in
equation (11), then for a given set of o; we get either at most m—1
independent solutions for f(x1) or that the coefficients of all deriva-
tives of f(x1) in L vanish.

Since equation (10) is to hold for all solutions u of L[«]=0, it is
impossible for L[u]=0 to give only m—1 solutions for f(x). On the
other hand, if the coefficients of all orders of d/dx,; vanish in equation
(10) for all sets of o, they vanish identically. We therefore conclude
that J,=J,, i.e., equation (5) is unique.

We now apply identity (5) to w=K(y—sz), which satisfies
L,[K(y—2)]=0 for 25y, since L is self-adjoint. Substituting in equa-
tion (4) we get the normalized representation:

(12) 9(2) = wi(z) — i > J.D:,K(y —32) forz=#9,2€ 9,

=0 |s|=v;8:<m

where we have defined 4,=J, for | s| <m.

We now prove that equation (12) is a unique representation of
9(2).” In particular it is independent of the construction leading to the
coefficients 4;. For suppose we had another representation of v(2):

(13) 2(2) = wa(2z) — i > T D;K(y — 3), forz %y, 2€ 9,

y=0 |g|mr;81<m

where D’ is some annular region about the point x=y such that
DND' =9’ is a nonempty set. Let the outer ball of D' be B}’ with
radius 7o, and the inner ball be By with radius r;.

Subtracting equation (13) from equation (12) we get for z=y,
2ED:

(14) ¢(z) = wi1(z) — wa(2) = i Z J, — J.’)D;K(y — 2).
y=0 |s|=v;8;<m

We want to prove that J,=J, and wi(2) =w:(z). We know the form
of the fundamental solution K(y—z).8

2=y
pm A ( ) for odd #,
p

p"'—"l:B(z— y>logp+C(z——y)] for even n,
P p

7 Unique within the choice of x;.
s See [1, pp. 298-303).

K(y—32) =
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where p= Iz—yl, and 4, B, C, K(y—32) are analytic for all real ¥, 2
with y#32. For n even p™"B((2—7%)/p) is a polynomial in 2—y. Then
D}K (y—3) has the form:

pn—n=lelE, (z —7
p

z2— 9 z2—9
pmn—lal I:H, )logp + G.(—— :l for even n,
P P

E,, H,, G, are regular for all real zy. We can then write equation (14)
in the form

) for odd =,
DK(y —2) =

¢(z)=i > (J.—J))D)K(y - 2)

ym0 |g|=v;5;<m

(15)

ad z — z —

= Z pm—n-—vNy(__y> — Q(P’ 'V) lOg p.

=0 p p

Let
z2—=y
n= 3
p

then
(16) o(y + pn) = D, ™ N,(n) — Qlp, 1) log p,

y0

where Q(p, 1) is a polynomial in z—y and Q=0 for odd n.
Consider an analytic continuation of equation (16) from the real p
to the complex {=p+4i{. For any fixed #, both ¢(y+¢n) and
w0 {™"N,(n) are univalued functions, analytic in ¢, and
Q(t, 7) log ¢ is a multivalued function in D'. Since this is true for

every fixed 7, we conclude that for both odd and even 7,

(17 ¢(y + on) = Z% P Ny ().

For any fixed 7, the right-hand side of equation (17) converges not
only for 7¢>p>rr but for all © >p=>r;. This is so because the series
part of equation (17) becomes a power series in negative powers of p,
except possibly for a finite number of positive powers in the case of
m—n>0. ¢(y+pn) is then analytic for all © >p=0. From the ana-
lyticity of ¢(y+pn) in « >p =0, we conclude, that the portion of the
series in equation (17) containing negative powers of p must vanish,
ie.,
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©

(18) > ™ N,(y) = 0.

r=0; m—n—r<0
For m—n <0 this means that ¢(z)=0. When m—n=0 we get in
addition:

m—n

(19) 2 PN = 0y + o).
y=0;m—nz0
We will take these two cases separately. First for equation (19),
using equation (15), we get:

m—n

(20) ¢() = 2. > (J.—J)DiK(y—13) = L[K(y — 2)]

ym0;m—nz0 |g|=v

Since | s[ <m—n, from the form of DK (y—z) we see that equation
(20) holds even at y=z. Let B be a ball containing y as an interior
point. Let Y/ () be any regular function which vanishes in a neighbor-
hood of B, the boundary of B. By Green’s identity

V) = fgfw(z)]m — 2)ds;
then

) L] = L] = [ Iv@leeds = [ vTisel

=y

Since L is self-adjoint and ¢ is a solution of L[¢]=0, equation (21)
implies that every regular function ¥, which vanishes in a neighbor-
hood of 8 has the property that at x=y, L[] =0. We then conclude
that L=0 and therefore from equation (20) ¢=0, i.e., w1(z) =wa(2).
Also for m—n =0, and m—n=|s| =0, we have J,=J!.

We now return to equation (18). Since for every fixed 7 equation
(18) is a power series its terms vanish separately. From equation (15)
this means that:

(22) > J.—J)DK(y —2) =0.

|8|=p; m—n—r<0
This could be written:

> U —J)DK -2 =% 2, (J.—J)DK(y—3)

|8]=r; m—n—r<0 |8|=p;m—n—r<0

(23) = P[K(y — 5] = 0.
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P, is a linear homogeneous operator with constant coefficients, and
equation (23) holds for all z such that r; < Iy—z| . But K(y—32) is
analytic for all real z with 2£y. Then equation (21) holds for all real
z with z #=y.

Let G be a simply connected open finite region. Let B¢ be the
boundary of G. Then a regular solution f, of Z[f] =0 has a represen-
tation in G:

f(z) = , M[K(¢ — 2), f(§)]dS:
and so

Pl@] = | MIPIKG = ), f@)ise = 0inG.
G

Then every regular solution f of Z[f] =0 in G is also a solution of
P.[f(z)]=0 in G. But P, has the property that all D! in P, have
siSm—1. It has been proved previously that not every f(z) which
solves L,[f(z)] =0 can solve P.[f(z)] =0 unless P,=0. We then con-
clude that J,=J/ for all |s| 20, and that equation (12) is a unique
representation of equation (2). Furthermore, this representation holds
right up to the singularity, since in our original construction we
may now take 7,>0, the radius of S; as small as we wish.
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