GENERALIZED LAURENT SERIES FOR SINGULAR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS¹

MURRAY WACHMAN

Introduction. Let \overline{L} be a linear elliptic differential operator with analytic coefficients in a region R of E_n . Let L be the adjoint of \overline{L} . This paper extends the previous work of F. John² on representation of a solution u of $\overline{L}[u]=0$, where u has a singularity of finite order. A representation is developed here for a solution v of $\overline{L}[v]=0$, where v has an isolated essential singularity. This representation is a generalization of the Laurent series. Here the summation over the nth powers is replaced by summation over the nth derivatives of a fundamental solution K(x, z), of the operator L. The representation in general is not unique.

Uniqueness of a suitably normalized representation is proved for the case in which \overline{L} is homogeneous with constant coefficients. This gives rise to a theorem which for the three-dimensional Laplace operator reduces to the Maxwell-Sylvester theorem.

The general case. Let v(x) be a solution of $\overline{L}[v(x)] = 0$, which has an isolated essential singularity at x = y, an interior point of the real region R, but is otherwise regular in the deleted region R. Let \overline{L} be of order m.

Let $\mathfrak{D} \subset R$ be an open annular domain about the point x = y. Let S_1 be the sphere bounding the outer ball B_1 of \mathfrak{D} and let S_2 be the sphere bounding the inner ball B_2 of \mathfrak{D} . Both B_1 and B_2 have the point x = y as center and $B_1 \neq B_2$. We further assume that B_1 is so small that K(x, z), a fundamental solution of L, is analytic for $x \neq z$ in B_1 .

THEOREM I. For $z \in \mathfrak{D}$, v(z) permits the following representation:

$$v(z) = \omega(z) - \sum_{r=0}^{\infty} \sum_{|i|=r} A_i D^i K(x,z) \bigg|_{x=y},$$

where $\omega(z)$ is analytic for $z \in B_1$, A_i are constants depending on S_2 , $|i| = i_1 + i_2 + \cdots + i_n$ and

Received by the editors December 4, 1962.

¹ I am indebted to Professor Fritz John for suggesting this problem.

² See [1].

³ See [2, pp. 514-521].

$$D^{i} = \frac{\partial^{|i|}}{\partial x_{1}^{i_{1}} \partial x_{2}^{i_{2}} \cdots \partial x_{n}^{i_{n}}}$$

PROOF. We know that there exists a ball $B_3 \subset B_2$ with center at x = y such that K(x, z) has a Taylor series expansion with respect to x, about x = y, for $x \in B_3$, $z \in \mathfrak{D}$. Let S_3 be the sphere bounding B_3 and let \overline{R} be the annular region defined by S_1 and S_3 . \overline{R} has the boundary $\beta = S_1 \cup S_3$. Applying Green's identity to the operator \overline{L} over \overline{R} we get for $z \in \mathfrak{D}$:

(1)
$$v(z) = \int_{\beta} M[K(x, z), v(x)] dS_{x}$$

$$= \int_{x \in S_{1}} M[K(x, z), v(x)] dS_{x} - \int_{x \in S_{2}} M[K(x, z), v(x)] dS_{x},$$

where M is a bilinear operator, and dS_x denotes integration over the surface of the boundary.

$$\omega(z) = \int_{z \in S_1} M[K(x, z), v(x)] dS_x$$

is clearly analytic for $z \in \mathfrak{D}$, since $x \in S_1$ and therefore $x \neq z$.

For $z \in \mathfrak{D}$, $x \in S_3$, K(x, z) has the Taylor series expansion about x = y:

$$K(x,z) = \sum_{n=0}^{\infty} \sum_{1 \le 1-n} \frac{1}{i!} (x-y)^{i} D_{y}^{i} K(y,z),$$

where $D_y^i K(y, z) = D^i K(x, z) \big|_{x=y}$; $(x-y)^i = (x_1 - y_1)^{i_1} \cdot \cdot \cdot (x_n - y_n)^{i_n}$; and $i! = (i_1!) \cdot \cdot \cdot (i_n!)$. Equation (1) then becomes:

$$v(z) = \omega(z) - \int_{x \in S_3} M \left[\sum_{v=0}^{\infty} \sum_{|i|=v} \frac{1}{i!} (x - y)^i D_v^i K(y, z), v(x) \right] dS_x.$$

Since M is a linear operator and the series is uniformly convergent:

$$v(z) = \omega(z) - \sum_{n=0}^{\infty} \sum_{|i|=n} \frac{1}{i!} D_{\nu}^{i} K(y,z) \int_{z \in S_{a}} M[(x-y)^{i}, v(x)] dS_{x}.$$

Let

$$A_i = \frac{1}{i!} \int_{x \in S_*} M[(x - y)^i, v(x)] dS_x.$$

 A_i is a constant. We then have as a final expression:

(2)
$$v(z) = \omega(z) - \sum_{y=0}^{\infty} \sum_{|z|=y} A_{i} D_{y}^{i} K(y, z).$$

It would be desirable to normalize equation (2), i.e., to obtain a form of equation (2) in which the A_i are *independent* of the spheres S_2 and S_3 . Equation (2) would then be unique and hold for any $z \neq y$, $z \in B_1$; because for any such z, we can find a B_2 and a B_3 with radius so small that the required Taylor series expansion for K(x, z) will exist.

We shall succeed in giving such a normalization of equation (2) only for the special case of \overline{L} homogeneous with constant coefficients, i.e.,

$$\overline{L} = \sum_{|i|=m} b_i D^i,$$

where the b_i are real constants. Let the coefficient of

$$D^{I} = \frac{\partial^{m}}{\partial x_{1}^{m}}$$

in \overline{L} be b_I . Since \overline{L} is elliptic b_I is not zero. We know that there exists a fundamental solution of \overline{L} of the form K(y-x), we shall use this fundamental solution in Theorem II.

THEOREM II.⁵ Let v(x) be a solution of $\overline{L}[v(x)] = \sum_{|i|=m} b_i D^i v(x) = 0$ for $x \in B_1$, $x \neq y$. Let v have an isolated essential singularity at x = y. Then there exists a representation of v(z) of the form:

$$v(z) = \omega(z) - \sum_{v=0}^{\infty} \sum_{|z|=v} A_z D_v^z K(y-z), \quad \text{for } z \neq y, z \in B_1,$$

where $A_{\bullet} = 0$, whenever D_{ν}^{\bullet} contains $D_{\nu}^{I} = \partial^{m}/\partial y_{1}^{m}$ as factor (i.e., whenever $s_{1} \geq m$); and this representation is unique.

PROOF. For $z \neq y$, $z \in \mathfrak{D}$, using equation (2) we can write:

(4)
$$v(z) = \omega_1(z) - \sum_{v=0}^{\infty} \sum_{|k|=v} A_k D_v^k [K(y-z)].$$

We will prove that each operator term $\sum_{|k|=\nu} A_k D_{\nu}^k$ in the above series, with $\nu \ge m$ can be written in the following form when it is applied to any solution u of $\overline{L}[u] = 0$.

⁴ See [1, pp. 298-303].

⁶ This is a generalization of the Maxwell-Sylvester theorem for the case of the three-dimensional Laplacian. See [2, pp. 514-521].

(5)
$$\sum_{|k|=\nu} A_k D^k u = \sum_{|s|=\nu; s_1 < m} J_s D^s u,$$

where J_{\bullet} are constants. We will also prove that equation (5) is unique. From equation (3) we have:

(6)
$$D^{I}u = \frac{1}{b_{I}} \left[\overline{L} - \sum_{|i|=m:i \in I} b_{i}D^{i} \right] u = -\sum_{|i|=m:i \in I} \frac{b_{i}D^{i}u}{b_{I}}.$$

The operator term $\sum_{|k|=\nu} A_k D^k$ can be written as a polynomial in powers of $\partial/\partial x_1$, i.e.,

(7)
$$\sum_{|k|=r} A_k D^k = \sum_{j=0; j+|\mu|=r; \mu_1=0}^{p} \sum_{\mu} G_{\mu+j} D^{\mu} \frac{\partial^j}{\partial x_1^j},$$

where $G_{\mu+j}$ are constants, p a non-negative integer which is the highest order of $\partial/\partial x_1$ in $\sum_{|k|=\nu} A_k D^k$. For solutions u of $\overline{L}[u]=0$ and for $p \ge m$, using equation (6), we can reduce the pth order polynomial operator in $\partial/\partial x_1$ in equation (7) to a (p-1)th order polynomial in $\partial/\partial x_1$. It is then seen that after p-m+1 steps equation (7), when applied to solutions u of $\overline{L}[u]=0$ reduces to:

(8)
$$\sum_{|k|=r} A_k D^k u = \sum_{j=0; j+|\mu|=r; \mu_j=0}^{m-1} \sum_{\mu} H_{\mu+j} D^{\mu} \frac{\partial^j}{\partial x_1^j} u = \sum_{|s|=r; s_1 < m} J_s D^s u,$$

where $H_{\mu+j}$, J_{\bullet} are constants.

We now prove uniqueness. Suppose we had the two identities, for all u with $\overline{L}[u] = 0$:

(5)
$$\sum_{|k|=r} A_k D^k u = \sum_{|s|=r; s_1 < m} J_s D^s u$$

and

(9)
$$\sum_{|k|=\nu} A_k D^k u = \sum_{|s|=\nu; s_1 < m} J'_s D^s u;$$

then

(10)
$$\hat{L}[u] = \sum_{|s|=\nu; s_1 < m} (J_s - J_s') D^s u = 0.$$

Equation (10) holds for all solutions u of $\mathcal{I}[u] = 0$. Consider solutions u of the form:

(11)
$$u(x) = f(x_1)e^{\sigma_2x_2+\cdots+\sigma_nx_n},$$

where the σ_i are constants. For a given set of σ_i , $\overline{L}[u(x)] = 0$ is an mth order differential equation in the variable x_1 , and there are m

⁶ The index $\mu + j = (\mu_1 + j, \mu_2, \dots, \mu_n)$.

independent solutions, $f(x_1)$. If we apply \hat{L} to u(x) as defined in equation (11), then for a given set of σ_i we get either at most m-1 independent solutions for $f(x_1)$ or that the coefficients of all derivatives of $f(x_1)$ in \hat{L} vanish.

Since equation (10) is to hold for all solutions u of $\overline{L}[u] = 0$, it is impossible for $\hat{L}[u] = 0$ to give only m-1 solutions for $f(x_1)$. On the other hand, if the coefficients of all orders of $\partial/\partial x_1$ vanish in equation (10) for all sets of σ_i , they vanish identically. We therefore conclude that $J_s = J'_s$, i.e., equation (5) is unique.

We now apply identity (5) to u = K(y-z), which satisfies $\overline{L}_{y}[K(y-z)] = 0$ for $z \neq y$, since L is self-adjoint. Substituting in equation (4) we get the normalized representation:

(12)
$$v(z) = \omega_1(z) - \sum_{p=0}^{\infty} \sum_{|z|=p; z_1 \leq m} J_z D_y^z K(y-z)$$
 for $z \neq y, z \in \mathfrak{D}$,

where we have defined $A_s = J_s$ for |s| < m.

We now prove that equation (12) is a unique representation of v(z). In particular it is independent of the construction leading to the coefficients A_i . For suppose we had another representation of v(z):

(13)
$$v(z) = \omega_2(z) - \sum_{v=0}^{\infty} \sum_{|z|=v; z_1 \le m} J_v' D_v' K(y-z), \quad \text{for } z \ne y, \ z \in \mathfrak{D}',$$

where \mathfrak{D}' is some annular region about the point x=y such that $\mathfrak{D} \cap \mathfrak{D}' = \mathfrak{D}''$ is a nonempty set. Let the outer ball of \mathfrak{D}'' be B_0'' with radius r_0 , and the inner ball be B_I'' with radius r_I .

Subtracting equation (13) from equation (12) we get for $z \neq y$, $z \in \mathfrak{D}''$:

(14)
$$\phi(z) = \omega_1(z) - \omega_2(z) = \sum_{v=0}^{\infty} \sum_{\substack{|z|=v,z,\leq m}} (J_z - J_z') D_v^* K(y-z).$$

We want to prove that $J_* = J_*'$ and $\omega_1(z) = \omega_2(z)$. We know the form of the fundamental solution K(y-z).

$$K(y-z) = \begin{cases} \rho^{m-n} A\left(\frac{z-y}{\rho}\right) & \text{for odd } n, \\ \\ \rho^{m-n} \left[B\left(\frac{z-y}{\rho}\right) \log \rho + C\left(\frac{z-y}{\rho}\right) \right] & \text{for even } n, \end{cases}$$

⁷ Unique within the choice of x_1 .

⁸ See [1, pp. 298–303].

where $\rho = |z-y|$, and A, B, C, K(y-z) are analytic for all real y, z with $y \neq z$. For n even $\rho^{m-n}B((z-y)/\rho)$ is a polynomial in z-y. Then $D_y^nK(y-z)$ has the form:

$$D_y^s K(y-z) = \begin{cases} \rho^{m-n-|s|} E_s \left(\frac{z-y}{\rho}\right) & \text{for odd } n, \\ \\ \rho^{m-n-|s|} \left[H_s \left(\frac{z-y}{\rho}\right) \log \rho + G_s \left(\frac{z-y}{\rho}\right) \right] & \text{for even } n, \end{cases}$$

 E_* , H_* , G_* are regular for all real $z \neq y$. We can then write equation (14) in the form

(15)
$$\phi(z) = \sum_{\nu=0}^{\infty} \sum_{|z|=\nu; z_1 < m} (J_z - J_z') D_y^z K(y-z)$$

$$= \sum_{\nu=0}^{\infty} \rho^{m-n-\nu} N_{\nu} \left(\frac{z-y}{\rho}\right) - Q\left(\rho, \frac{z-\nu}{\rho}\right) \log \rho.$$

Let

$$\eta = \frac{z - y}{a};$$

then

(16)
$$\phi(y+\rho\eta)=\sum_{r=0}^{\infty}\rho^{m-n-r}N_{r}(\eta)-Q(\rho,\eta)\log\rho,$$

where $Q(\rho, \eta)$ is a polynomial in z-y and $Q \equiv 0$ for odd n.

Consider an analytic continuation of equation (16) from the real ρ to the complex $\zeta = \rho + i\xi$. For any fixed η , both $\phi(y + \zeta \eta)$ and $\sum_{\nu=0}^{\infty} \zeta^{m-n-\nu} N_{\nu}(\eta)$ are univalued functions, analytic in ζ , and $Q(\zeta, \eta) \log \zeta$ is a multivalued function in \mathfrak{D}'' . Since this is true for every fixed η , we conclude that for both odd and even n,

(17)
$$\phi(y + \rho \eta) = \sum_{\nu=0}^{\infty} \rho^{m-n-\nu} N_{\nu}(\eta).$$

For any fixed η , the right-hand side of equation (17) converges not only for $r_0 > \rho > r_I$ but for all $\infty > \rho \ge r_I$. This is so because the series part of equation (17) becomes a power series in negative powers of ρ , except possibly for a finite number of positive powers in the case of m-n>0. $\phi(y+\rho\eta)$ is then analytic for all $\infty > \rho \ge 0$. From the analyticity of $\phi(y+\rho\eta)$ in $\infty > \rho \ge 0$, we conclude, that the portion of the series in equation (17) containing negative powers of ρ must vanish, i.e.,

(18)
$$\sum_{p=0: m-n-r<0}^{\infty} \rho^{m-n-r} N_{r}(\eta) = 0.$$

For m-n<0 this means that $\phi(z)=0$. When $m-n\ge 0$ we get in addition:

(19)
$$\sum_{\nu=0: m-n>0}^{m-n} \rho^{m-n-\nu} N_{\nu}(\eta) = \phi(y+\rho\eta).$$

We will take these two cases separately. First for equation (19), using equation (15), we get:

(20)
$$\phi(z) = \sum_{y=0; m-n \ge 0}^{m-n} \sum_{|z|=y} (J_z - J_z') D_y^z K(y-z) = \tilde{L}_y [K(y-z)]$$

Since $|s| \le m - n$, from the form of $D_y^s K(y-z)$ we see that equation (20) holds even at y=z. Let \overline{B} be a ball containing y as an interior point. Let $\psi(\eta)$ be any regular function which vanishes in a neighborhood of $\overline{\beta}$, the boundary of \overline{B} . By Green's identity

$$\psi(\eta) = \int_{\overline{B}} \overline{L}[\psi(z)]K(\eta - z)dz;$$

then

$$(21) \quad \overline{L}[\psi(\eta)] \bigg|_{\eta=u} = \overline{L}_{\nu}[\psi(y)] = \int_{\overline{B}} \overline{L}[\psi(z)] \phi(z) dz = \int_{\overline{B}} \psi(z) \overline{L}[\phi(z)] dz.$$

Since L is self-adjoint and ϕ is a solution of $\overline{L}[\phi] = 0$, equation (21) implies that every regular function ψ , which vanishes in a neighborhood of $\overline{\beta}$ has the property that at x = y, $\widetilde{L}[\psi] = 0$. We then conclude that $\widetilde{L} \equiv 0$ and therefore from equation (20) $\phi \equiv 0$, i.e., $\omega_1(z) = \omega_2(z)$. Also for $m - n \ge 0$, and $m - n \ge |s| \ge 0$, we have $J_s = J_s'$.

We now return to equation (18). Since for every fixed η equation (18) is a power series its terms vanish separately. From equation (15) this means that:

(22)
$$\sum_{|z|=p; m-n-p<0} (J_z - J_z') D_y' K(y-z) = 0.$$

This could be written:

$$\sum_{|s|=r; m-n-r<0} (J_s - J_s') D_v^s K(y-z) = \pm \sum_{|s|=r; m-n-r<0} (J_s - J_s') D_z^s K(y-z)$$

$$= P_s [K(y-z)] = 0.$$

 P_s is a linear homogeneous operator with constant coefficients, and equation (23) holds for all z such that $r_I \leq |y-z|$. But K(y-z) is analytic for all real z with $z \neq y$. Then equation (21) holds for all real z with $z \neq y$.

Let G be a simply connected open finite region. Let β_G be the boundary of G. Then a regular solution f, of $\overline{L}[f] = 0$ has a representation in G:

$$f(z) = \int_{\beta a} M[K(\xi - z), f(\xi)] dS_{\xi}$$

and so

$$P_{z}[f(z)] = \int_{\beta_{G}} M[P_{z}[K(\xi - z)], f(\xi)] dS_{\xi} = 0 \text{ in } G.$$

Then every regular solution f of $\overline{L}[f] = 0$ in G is also a solution of $P_z[f(z)] = 0$ in G. But P_z has the property that all D_z^s in P_z have $s_1 \le m-1$. It has been proved previously that not every f(z) which solves $\overline{L}_z[f(z)] = 0$ can solve $P_z[f(z)] = 0$ unless $P_z \equiv 0$. We then conclude that $J_z = J_z'$ for all $|z| \ge 0$, and that equation (12) is a unique representation of equation (2). Furthermore, this representation holds right up to the singularity, since in our original construction we may now take $r_2 > 0$, the radius of S_2 as small as we wish.

BIBLIOGRAPHY

- 1. Fritz John, The fundamental solution of linear elliptic differential equations with analytic coefficients, Comm. Pure Appl. Math. 3 (1950), 273-304.
- 2. R. Courant and D. Hilbert, Methods of mathematical physics, Vol. I, Interscience, New York, 1953.

GENERAL ELECTRIC, KING OF PRUSSIA, PENNSYLVANIA