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Introduction. Let L be a linear elliptic differential operator with

analytic coefficients in a region R of E„. Let L be the adjoint of L.

This paper extends the previous work of F. John2 on representation

of a solution u of L[m] = 0, where u has a singularity of finite order.

A representation is developed here for a solution v of L[v] =0, where v

has an isolated essential singularity. This representation is a generali-

zation of the Laurent series. Here the summation over the wth powers

is replaced by summation over the rath derivatives of a fundamental

solution K(x, z), of the operator L. The representation in general is

not unique.

Uniqueness of a suitably normalized representation is proved for

the case in which L is homogeneous with constant coefficients. This

gives rise to a theorem which for the three-dimensional Laplace opera-

tor reduces to the Maxwell-Sylvester theorem.'

The general case. Let v(x) be a solution of L[v(x)]=0, which has

an isolated essential singularity at x = y, an interior point of the real

region R, but is otherwise regular in the deleted region R. Let L be

of order m.

Let SDCP be an open annular domain about the point x = y. Let

Sx be the sphere bounding the outer ball Bx of 5) and let 52 be the

sphere bounding the inner ball B2 of D. Both Bx and B2 have the

point x = y as center and Bx^B2. We further assume that Bx is so

small that K(x, z), a fundamental solution of L, is analytic for x^z

in Bx.

Theorem I. For zE&, v(z) permits the following representation:

00

v(z) = œ(z) -ZZ     AiD<K(x,z)
»=0    \i\-T

where u(z) is analytic for zEBlt Ai are constants depending on S2,

\i\ =ñ+i2+ • • • -\-in and
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1 I am indebted to Professor Fritz John for suggesting this problem.

'See [1].

»See [2, pp. 514-521].
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Di =
dx^dx** • • • dx*»

12 n

Proof. We know that there exists a ball B3EB2 with center at

x = y such that Kix, z) has a Taylor series expansion with respect to

x, about x = y, for xEBs, z££). Let S3 be the sphere bounding B% and

let R be the annular region defined by Si and S3. R has the boundary

ß = SiUS3. Applying Green's identity to the operator L over R we

get for zES>:

viz) =  I  M[K(x, z), v(x)]dSx
J ß

=  f     M[K(x,z),v(x)]dSx- f     M[K(x,z),v(x)]dSx,

(1)

where M is a bilinear operator, and dSx denotes integration over the

surface of the boundary.

u(z) =  I       M[K(x, z), v(x)]dSx
J16S1

is clearly analytic for z£2D, since xESi and therefore x^z.

For z££>, xESi, K(x, z) has the Taylor series expansion about

x = y:

K(x, z) = ¿ H-(x- y)DÍK(y, z),
»„0 \i\-v   1.

where ^(y, z) = D'K(x, z)\x=v; (x-y)i=(xi-yi)" • ■ • («»-y»)*»;

and i!=(îi!) • • • (»»!). Equation (1) then becomes:

v(z) = »f» - f    M [ ¿ E — (* - y)'^«"^, «), »(*)] ¿s-

Since M is a linear operator and the series is uniformly convergent:

viz) = «(*) - ¿  ¿j - DÍiPfjr, z)  f     M[(* - y)«, *(*)]dS,.
,=0  \i\-r   *! «^ 16S3

Let

¿< = — f     M[ix - y)<, *(*)]<££,
1! J «*s.î! ^ x6S3

.4 ¿ is a constant. We then have as a final expression :
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(2) v(z) = «(«) - Z Z AiDÍKiy, z).
r—0   111 —»

It would be desirable to normalize equation (2), i.e., to obtain a

form of equation (2) in which the A < are independent of the spheres 52

and S3. Equation (2) would then be unique and hold for any z^y,

zEBi; because for any such z, we can find a B2 and a B3 with radius

so small that the required Taylor series expansion for K(x, 2) will

exist.

We shall succeed in giving such a normalization of equation (2)

only for the special case of L homogeneous with constant coefficients,

i.e.,

(3) Z =   Z biD<,

where the bi are real constants. Let the coefficient of

dm

D1 =-
dx?

in L be bi. Since L is elliptic bi is not zero. We know that there exists

a fundamental solution of L of the form K(y — x),* we shall use this

fundamental solution in Theorem II.

Theorem ll.bLetv(x) be a solution ofL[v(x)] = Zn\-™ biDiv(x) =0

for xEBx, XT^y. Let v have an isolated essential singularity at x = y.

Then there exists a representation of viz) of the form:

»

viz) = u(z) — X)  23 A.D'vK(y — z),       for z 9* y, z E Bx,
»=0   |sl=»

where A, = 0, whenever D'y contains Dly = dm/dy\n as factor (i.e., whenever

Sx = ni) ; and this representation is unique.

Proof. For zj&y, zGSD, using equation (2) we can write:

(4) v(z) = Wlr» - Z   Z  AkDky[K(y - z)].
»-0    I A- ! —J.

We will prove that each operator term Zi^-" AkD\ in the above

series, with p = m can be written in the following form when it is

applied to any solution u ol L[u] = 0.

«See [1, pp. 298-303].
6 This is a generalization of the Maxwell-Sylvester theorem for the case of the

three-dimensional Laplacian. See [2, pp. 514-521].
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(5) H   AkD*U =        H      I.D'U,
|fc|=» \a\=v;si<m

where /, are constants. We will also prove that equation (5) is unique.

From equation (3) we have:

^     biDlu
u =(6) DJu = — \L -     H     biD

brL \i\-m;ijél J \i\-m;i*I       bi

The operator term  H\k\=v AkDk can be written as a polynomial

in powers of d/dxi, i.e.,

(7) HAkD*= £ EGrt*4
\k\=, J—0;j+|^|—i-;mi—0     u OXi

where G„+j are constants,6 p a non-negative integer which is the

highest order of d/dxi in H\k\=y AkDk. For solutions u of £[m] = 0

and for p^m, using equation (6), we can reduce the pth order poly-

nomial operator in ô/ôxi in equation (7) to a (p — l)th order poly-

nomial in d/dxi. It is then seen that after p — m + 1 steps equation

(7), when applied to solutions «of L[m] = 0 reduces to:

m-l Qj

(8) HAkD"u= H £iW> —« =     H   J,D'u,

where Hf+¡, J, are constants.

We now prove uniqueness. Suppose we had the two identities, for

all u with L[u] = 0:

(5) 21 AkD"u =     H    J.D'u

and

(9) HAkD*u=     H    J:D>u;
|t|—» M=»;»i<m

then

(10) L[u] =      H     (/. - J.')D>u = 0.
\,\=.v;ti<m

Equation (10) holds for all solutions u of Z[m] = 0. Consider solu-

tions u of the form :

(11) uix) = fixi)?"**--"^"*",

where the o, are constants. For a given set of <r¿, Z,[m(x)] = 0 is an

mth order differential equation in the variable xi, and there are m

« The index u+j = (vn+j, m, • • • , /in).
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independent solutions, f(xx). If we apply L to u(x) as defined in

equation (11), then for a given set of <r< we get either at most m — 1

independent solutions lor f(xx) or that the coefficients of all deriva-

tives of f(xx) in L vanish.

Since equation (10) is to hold for all solutions u of L[u] = 0, it is

impossible for Z[w] = 0 to give only m — 1 solutions for/(xi). On the

other hand, if the coefficients of all orders of d/dxx vanish in equation

(10) for all sets of o-¿, they vanish identically. We therefore conclude

that J, = J'„ i.e., equation (5) is unique.

We now apply identity (5) to u = K(y—z), which satisfies

Ly[K(y — z)]=0 lor zj^y, since L is self-adj oint. Substituting in equa-

tion (4) we get the normalized representation:

OO

(12) v(z) = coi(z) -Z     Z     J.D'yK(y - z)       ioxz?¿y,zE 2D,

where we have defined A, = /, for \s\ <m.

We now prove that equation (12) is a unique representation of

v(z)J In particular it is independent of the construction leading to the

coefficients Ai. For suppose we had another representation of v(z):

00

(13) v(z) = W2(z) - Z     Z     J! D[K(y - z),       forz * y, z E 3D',
»•— 0   |«l-.y;*i<m

where 3D' is some annular region about the point x = y such that

SDH 20'= 2D" is a nonempty set. Let the outer ball of 2D" be B'0' with

radius r0, and the inner ball be B¡ with radius r¡.

Subtracting equation (13) from equation (12) we get for zy^y,

zG3D":

00

(14) 4>(z) = Wl(s) - o¡2(z) = Z     Z     iJ-~ JDD'yKiy - z).
f=0   |*|*=y;ii<m

We want to prove that J, = J', and Wi(z) =co2(z). We know the form

of the fundamental solution K(y — z).s

•-M Í-)       for odd »,

K(y-z) = \ P_

pm-n   b ( !-1 J log p + ci-J for even n,

7 Unique within the choice of ¡Ci.

8 See [l, pp. 298-303].
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where p=\z—y\, and A, B, C, Kiy—z) are analytic for all real y, z

with y^z. For n even pm~nB((z—y)/p) is a polynomial in z—y. Then

DyK(y — z) has the form:

DyKiy - z)

(z — y\
——■ J       for odd n,

for even n,

E„ H„ G, are regular for all real zy^y. We can then write equation (14)

in the form

(15)

Let

*(») = S     Z     (J.-Ji)D'yK(y-z)
y=0   \t\=y;si<rn

= Z Pm—>N, ( ^^ ) - Ö (p. —- ) lo8 /»•

z — y

then

(16) *(y + pv) = E Pm-n-'N,(r¡) - Q(p, V) log p,

where Q(p,v) is a polynomial in z — y and Q = 0 for odd n.

Consider an analytic continuation of equation (16) from the real p

to the complex if = p+i£. For any fixed n, both (¡¡iy+Çn) and

S^-o Çm~n~"Nv(ri) are univalued functions, analytic in f, and

Q(f, 17) log f is a multivalued function in 2D". Since this is true for

every fixed 17, we conclude that for both odd and even n,

(17) <t>iy + Pi") = E Pm-n-'Nr(r¡).

For any fixed ?7, the right-hand side of equation (17) converges not

only for r0>p>ri but for all oo>p^n. This is so because the series

part of equation (17) becomes a power series in negative powers of p,

except possibly for a finite number of positive powers in the case of

m — n>0. 4>(y~\-pri) is then analytic for all «> >p=0. From the ana-

lyticity of (p(y+pv) in 00 >p = 0, we conclude, that the portion of the

series in equation (17) containing negative powers of p must vanish,

i.e.,
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(18) H        pm-"-'Nrir,) = 0.
»—0;m—n—r<0

For m — n<0 this means that </>(z) = 0. When m—» = 0 we get in

addition:

m—n

(19) H    Pm-"-'Nriv) = 4>iy + pv)-

We will take these two cases separately. First for equation (19),

using equation (15), we get:

m—n

(20) 0(8) =       H        HiL- i:)DlKiy - z) = L\[K(y - z)]
y—0;m—nsO    |»|=»

Since I s| ¿m — n, from the form of PJ/C(y — z) we see that equation

(20) holds even at y = z. Let B be a ball containing y as an interior

point. Let 1^(77) be any regular function which vanishes in a neighbor-

hood of ß, the boundary of B. By Green's identity

*0i)«  ( L[tiz)]Kin - z)dz;
J B

then

(21) L[pirj)]        =Ly[piy)]=  f L[tiz)]d>iz)dz =  f tiz)L[d,iz)]dz.
,_,, J B J B

Since L is self-adjoint and <b is a solution of Z,[<£]=0, equation (21)

implies that every regular function \p, which vanishes in a neighbor-

hood of ß has the property that at x = y, L[\p] = 0. We then conclude

that Z = 0 and therefore from equation (20) 0 = 0, i.e., Wi(z) =co2(z).

Also for m — w = 0, and m — «= | s| i£0, we have JB = J¡.

We now return to equation (18). Since for every fixed 17 equation

(18) is a power series its terms vanish separately. From equation (15)

this means that:

(22) H       iI,-Jl)D'yKiy-z) = 0.
I s I =p; m—n— p<0

This could be written :

H        iJ,  - f.) D'yKiy - z) = ±     H        (/, - /,' ) DlKiy - z )
I g 1 =f; m—n—j*<0 I * I =v\ m—n—r<. 0

(23) = P,[Kiy - z)] = 0.
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P, is a linear homogeneous operator with constant coefficients, and

equation (23) holds for all z such that rr=|y — z\. But K(y — z) is

analytic for all real z with Z5¿y. Then equation (21) holds for all real

z with z 9e y.

Let G be a simply connected open finite region. Let ßa be the

boundary of G. Then a regular solution /, of L [f] = 0 has a represen-

tation in G:

f(z)= f M[K(£-z),f(t)]dSi
J ßo

and so

P,[f(z)] = f M[P,[K(^ - z)],f(Z)]dSi = 0 in G.
J ßa

Then every regular solution / of L [f] = 0 in G is also a solution of

F«[/(z)] = 0 in G. But Pz has the property that all D'z in P, have

si^jw — 1. It has been proved previously that not every/(z) which

solves Zj [f(z) ] = 0 can solve Pz [f(z) ] = 0 unless Pt = 0. We then con-

clude that J, = J', for all \s\ =0, and that equation (12) is a unique

representation of equation (2). Furthermore, this representation holds

right up to the singularity, since in our original construction we

may now take r2>0, the radius of S2 as small as we wish.
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