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I. Let Ait) be an »X« matrix and pit) an n-vector, the elements

of each being complex-valued, uniformly bounded and measurable on

the real half-line {i| 0^t<co}. Denote by Xit) the (absolutely

continuous) fundamental solution matrix, for which XiO) = I, of the

homogeneous equation associated with the nonhomogeneous system

(1) ^ - Ait)y + pit).
at

A vector (matrix) will be said to converge if each of its elements

tends to a finite limit as t—»« ; if, for every convergent pit), every

solution of (1) also converges then the coefficient matrix, Ait), of (1)

will be said to be of type (<~). Denoting by || -|| a vector (matrix)

norm, defined as the sum of the moduli of the elements of the vector

(matrix), the following characterization of matrices of type (~) may

be given [l ] :

(a) Ait) is of type (~) iff Xit) satisfies both
(i) there exist K>0, p>0 such that \\Xit)X-1ÍT)\\^Ke-»tt-*'>,

i^rJäO, and

(ii) the matrix Yit)= J¿Xit)X~lir)dT converges.

In the event that both (i), (ii) are satisfied, then for every solution,

y it), of (l),

(2) lim y(t) = lim Y(t) • lim pit),

where lim denotes limt..«,. In [l], it is also shown that if Ait) is "al-

most constant," that is, if Ait)=A+Bit), where A is a stability

matrix1 and Bit) satisfies either lim ||73(/)|| =0 or /°°||5(/)|| dt < «>,

then F(co)=lim Y it) exists and has the value —A~x.

In connection with (a), two questions immediately arise, the in-

vestigation of which forms the subject of this paper. They are:

(a) under what conditions does (ii) imply (i),2 and (b) for an arbitrary

matrix of type (~), what is the value of F(°o)? Complete answers to

both these questions are given in the sequel. The author is indebted

to H. G. Hermes for several valuable suggestions.
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1 A stability matrix is a constant »X» matrix all of whose characteristic roots

have negative real parts.

1 That (i) need not imply (ii) was shown in [l ] for the case of a periodic matrix
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II. The property of type (~) matrices expressed in the following

lemma will be of fundamental importance in the sequel.

Lemma. If A it) is of type (~), then F( » ) is nonsingular.

Suppose, on the contrary, that F(») is singular; then there exists

a nonzero vector, c, in the null space of F(oo). Consider the system

(1) with p(t) = c; it is a consequence of the statement following (a)

that lim y(2) = F(oo)-c = 0. However, if both members of (1) be

integrated over the interval [t, 2+1 ], there results

/<+i
A(r)y(r)dr,

from which is obtained, by virtue of the uniform boundedness of A (t),

the estimate ||e|| á(2+A) supIS¡ ||y(r)||. Since the right-hand mem-

ber of this inequality can be made arbitrarily small by taking 2 large

enough, there results c = 0, a contradiction.!

We may now provide an answer to the question (a) above by stat-

ing

Theorem 1. The matrix A(t) is of type (~) iff lim Y(t) exists and

is the negative of a stability matrix.

For the proof, note first that the nonsingularity of F( <» ) implies

the existence of a 2*< °o such that Y(t) is nonsingular for all t>t*.

Thus we may define a matrix T(t) by

(3) 7X0 - Y~i(t)X(t),       t' = 2,

for arbitrary, but fixed, t'>t*. Differentiation of (3) leads to

(4) ^- = - Y~^T>       *' £ <>
at

which may be written

(5) =[-Y-i(*)+S(t)]T,       ( = 2,
at

where lim ||5(2)||=0.
When .4(2) is of type (~), X(t) satisfies (i) and, since Y_1(t) is

bounded, it then follows from (3) that T(t) satisfies, for some L>0,

(6) || r(2)F-1W11 á ¿e-*«-'\        2 = r = 2'.

Armed with this fact, an application to (5) of [l, Theorem 2] and
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its corollary permits the conclusion that — Y~1(<*>), hence — F(»), is

a stability matrix.

Conversely, if — Y( «j ) is a stability matrix then an application to

(5) of the corollary to [l, Theorem 2] shows that T(t) satisfies (6).

This result implies, by virtue of (3), the following inequality:

(7) ||A(2)X-1(r)|| rg Me-"«--\       t^r^t',

lor some M > 0. With (7), a continuity argument then suffices to show

that X(t) satisfies (i).|

Remark. It is interesting to note that when A (t) =A, a constant

matrix, Theorem 1 remains true with the condition reduced to the

mere convergence of Y(t) (cf. [2, Theorem XVII]).

III. Consider now the homogeneous system

dw
(8) — = Bit)w,

at

where, again, 5(2) is an «X« matrix whose complex-valued elements

are uniformly bounded and measurable on the right half-line. The

matrix Bit) will be said to be of type (*) [3; 4] if to each constant

«-vector, d, there corresponds a solution, wit), of (8) for which

lim w(t)=d. Type (*) matrices have the following characterization [4] :

03) B(t) is of type (*) iff to each nonsingular constant matrix, C,

there corresponds a fundamental matrix, W(t; C), of (8) for which

UmW(t; C) = C.
Referring to the defining property for type (~) matrices, it is seen

that, by choosing pit) so that lim pit) = F-1(«>)c, every solution of

(1) can be made to converge to an arbitrary preassigned constant

vector, c. Thus type (*) and type (~) matrices are, in this sense,

analogues and one anticipates the existence of an even more intimate

connection between these two types of matrices. This anticipation is

substantiated in the subsequent theorems.

Theorem 2. IfB(t) is of type (*) and if A(t)=A(t; C), where

(9) A(t;C) = B(t) + W-\t;C),

then for every stability matrix, C, A (t) is of type (~) and Y( =o ) = — C.

It is a matter of direct verification to discover that —W(t; C)

satisfies the matrix equation

dZ
(10) -= A(t)Z + I

dt
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as does — Xit)WiO; C) + 7(i), so that uniqueness implies

(11) Yil) = Xil)WiO; C) - Wit; C).

It is apparent that, if Xit) satisfies (i), then lim ||-XX0|| =0 so that

we obtain from (11), 7(oo) = — C. The conclusion of the theorem then

follows by virtue of (a).

It is thus sufficient to show that Xit) satisfies (i) and, to accom-

plish this, the device introduced in the proof of Theorem 1 is em-

ployed. We define the matrix Qit) by

(12) QÜ) = W-\t; QXit)

which may be differentiated to obtain

dQ
-f = W-\t; C)Q.
at

This last equation may in turn be written as

(13) ^j- = [C-1 + Fit)]Q,
at

where lim ||.F(¿)|| =0. The argument then proceeds from (12) and (13)

in precisely the same manner as in the second part of the proof of

Theorem 1, leading to the desired conclusion. |

Theorem 2 has the following partial converse.

Theorem 3. If Ait) is of type (~) and if, for some sufficiently large,

finite t', Bit) satisfies

Bit) = Ait) + Y-\i)

on [f, «), then B(t) is of type (*).

It may be directly verified that the columns of Y(t) satisfy (8) on

[t', <»); the fundamental matrix W(t; F(«>)) which coincides with

7(0 on [f, oo) is then found to be W(t; 7(»)) = W(t) [W-l(t') Y(t')],

where W(t) is that fundamental matrix of (8) for which 17(0) = /.|

We may now prove the following representation theorem, which

contains the corollary to [l, Theorem 2 ] as well as several well-known

theorems of stability for the homogeneous equation associated with

(1).

Theorem 4. If

(14) Ait) = A + Bit) + C(t),

where A is a stability matrix, Bit) is of type (*) and lim ||C(¿)|| =0,
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then A(t) is of type (~) and F(») = —A-1. Moreover, for sufficiently

large t' < oo, every A (t) of type (~) has a representation of this form on

V, »).
From Theorem 2 we know that the matrix

(15) A 4- B(t) + [W-Kl; A-1) - A]

is of type (~). Since the bracketed term in (15) tends to zero as

2—>oo, it follows by [l, Theorem 2] that .4+5(2) is of type (~);

another application of [l, Theorem 2] then establishes the first state-

ment of Theorem 4. For the proof of the second statement, we note

that, by virtue of Theorem 3

(16) AH) = - F--(oo) + Bit) + [F-K«) - Y-\t)],     2' = 2 < oo ;

since Theorem 1 implies that — F-1(°o) is a stability matrix, the

conclusion is immediate.!

Wintner [4] has shown that, in order that Bit) be a type (*) matrix,

it is sufficient (but not necessary) that Bit) satisfy the following

condition: (y) Boit) = ffBi^dr < « and either f«\\B(t)Ba(t)\\dt < oo

orf™\\B0(t)B(t)\\dt < oo.

The ramifications [4] of (y) make it clear that, as stated previously,

the corollary to [l, Theorem 2] is contained in Theorem 5. In the

scalar case, n = 1, a simple example of a type (*) matrix which satis-

fies neither of the conditions of [l, Theorem 2] is given by B(t)

-expif, p>l.

We conclude by answering the question: for a type (~) matrix

AQ), when does lim id Y/dt) = 0?

Theorem 6. In order that lim id Y/dt) = 0 for a type (~) matrix

A it), it is necessary and sufficient that A it) converge to a stability matrix.

The sufficiency is implied by the corollary to [l, Theorem 2]. For

the necessity, we have Ait) = idY/dt—I)Y~lit) lor all sufficiently

large values of 2; from this it follows that lim A it) = — F_1( oo ).|
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