THE COEFFICIENTS OF THE RECIPROCAL OF A BESSEL FUNCTION ${ }^{1}$

L. CARLITZ

Put

$$
\left\{\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!n!}\right\}^{-1}=\sum_{n=0}^{\infty} \frac{\omega_{n} x^{n}}{n!n!}
$$

This is equivalent to

$$
\sum_{r=0}^{n}(-1)^{r}\binom{n}{r}^{2} \omega_{r}= \begin{cases}1 & (n=0) \tag{1}\\ 0 & (n>0)\end{cases}
$$

In a letter to the author, J . Riordan has raised the question whether the ω_{n} can satisfy a recurrence of order independent of n. We shall show that the ω_{n} cannot satisfy a recurrence order k, where k is independent of n, with polynomial coefficients. More precisely we show that the assumption

$$
\begin{equation*}
\sum_{j=0}^{k} A_{j}(n) \omega_{n+j}=0 \quad(n>N) \tag{2}
\end{equation*}
$$

where the $A_{j}(n)$ are polynomials in n with complex coefficients and k, N are fixed, leads to a contradiction.

Since it is no more difficult, we consider the following more general problem. Put

$$
\begin{equation*}
\left\{\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!\Gamma(\nu+n+1)}\right\}^{-1}=\sum_{n=0}^{\infty} \frac{\omega_{n}(\nu) x^{n}}{n!\Gamma(\nu+n+1)} \tag{3}
\end{equation*}
$$

This is equivalent to

$$
\sum_{r=0}^{n}(-1)^{r}\binom{\nu+n}{r}\binom{\nu+n}{n-r} \omega_{r}(\nu)= \begin{cases}1 & (n=0) \tag{4}\\ 0 & (n>0)\end{cases}
$$

We assume that ν is not a negative integer; then it is clear that the $\omega_{n}(\nu)$ are uniquely determined by (3) or (4).

Now assume that the $\omega_{n}(\nu)$ satisfy the recurrence

$$
\begin{equation*}
\sum_{j=0}^{k} A_{j}(n, \nu) \omega_{n+j}(\nu)=0 \tag{5}
\end{equation*}
$$

Received by the editors January 22, 1963.
${ }^{1}$ Supported in part by National Science Foundation grant G-16485.
for all $n>N$, where the $A_{j}(n, \nu)$ are polynomials in n with complex coefficients and k, N are fixed. Put

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!\Gamma(\nu+n+1)} \\
& g(x)=\frac{1}{f(x)}=\sum_{n=0}^{\infty} \frac{\omega_{n}(\nu) x^{n}}{n!\Gamma(\nu+n+1)}
\end{aligned}
$$

Now if $P(x)$ is an arbitrary polynomial with constant coefficients, it is evident that

$$
P(x D) g(x)=\sum_{n=0}^{\infty} P(n) \frac{\omega_{n}(\nu) x^{n}}{n!\Gamma(\nu+n+1)},
$$

where $D=d / d x$; moreover since

$$
D^{j} g(x)=\sum_{n=0}^{\infty} \frac{\omega_{n+j}(\nu) x^{n}}{n!\Gamma(\nu+n+j+1)}
$$

it follows that

$$
\begin{equation*}
P(x D) \cdot D^{i} g(x)=\sum_{n=0}^{\infty} \frac{P(n)}{(\nu+n+1)_{j}} \frac{\omega_{n+j}(\nu) x^{n}}{n!\Gamma(\nu+n+1)} . \tag{6}
\end{equation*}
$$

If we multiply both sides of (5) by

$$
\frac{x^{n}}{n!\Gamma(\nu+n+1)}
$$

and sum over all $n>N$ we get

$$
\begin{equation*}
\sum_{j=0}^{k} \sum_{n=0}^{\infty} A_{j}(n, \nu) \frac{\omega_{n+j}(\nu) x^{n}}{n!\Gamma(\nu+n+1)}=C(x) \tag{7}
\end{equation*}
$$

where $C(x)$ is a polynomial in x of degree $\leqq N$. Repeated differentiation of (7) leads to an equation of the same kind in which the right member vanishes.

Comparison of (7) with (6) shows that $g(x)$ satisfies a differential equation of the form

$$
\begin{equation*}
\sum_{j=0}^{m} B_{j}(x, \nu) D^{m-i} g(x)=0 \tag{8}
\end{equation*}
$$

where the $B_{j}(x, \nu)$ are polynomials in x. The order m depends upon the degree of the $A_{j}(n, \nu)$. We may assume that

$$
\begin{equation*}
B_{0}(x, \nu) \neq 0 \tag{9}
\end{equation*}
$$

In the next place since $g(x)=1 / f(x)$, we have

$$
\begin{align*}
g^{\prime}(x) & =-\frac{f^{\prime}(x)}{f^{2}(x)}, \quad g^{\prime \prime}(x)=-\frac{f^{\prime \prime}(x)}{f^{2}(x)}+\frac{2\left(f^{\prime}(x)\right)^{2}}{f^{3}(x)} \\
g^{\prime \prime \prime}(x) & =-\frac{f^{\prime \prime \prime}(x)}{f^{2}(x)}+6 \frac{f^{\prime}(x) f^{\prime \prime}(x)}{f^{3}(x)}-6 \frac{\left(f^{\prime}(x)\right)^{3}}{f^{4}(x)} \tag{10}
\end{align*}
$$

and so on. Making use of (10) we may replace (8) by a differential equation in $f(x)$.

For simplicity we shall assume $m=3$; the method is however quite general. We find that

$$
\begin{align*}
& B_{0}\left\{-f^{2}(x) f^{\prime \prime \prime}(x)+6 f(x) f^{\prime}(x) f^{\prime \prime}(x)-6\left(f^{\prime}(x)\right)^{3}\right\} \\
& +B_{1}\left\{-f^{2}(x) f^{\prime \prime}(x)+2 f(x)\left(f^{\prime}(x)\right)^{2}\right\}-B_{2} f^{2}(x) f^{\prime}(x)+B_{3} f^{3}(x)=0 \tag{11}
\end{align*}
$$

where $B_{j}=B_{j}(x, \nu)$. Now, on the other hand, we have

$$
x f^{\prime \prime}(x)+(\nu+1) f^{\prime}(x)+f(x)=0
$$

so that

$$
x f^{\prime \prime \prime}(x)+(\nu+2) f^{\prime \prime}(x)+f^{\prime}(x)=0
$$

We may eliminate $f^{\prime \prime}(x)$ and $f^{\prime \prime \prime}(x)$ in (11); there results an equation of the form

$$
\begin{align*}
C_{0}(x, \nu)\left(f^{\prime}(x)\right)^{3}+C_{1}(x, \nu) & \left(f^{\prime}(x)\right)^{2} f(x) \tag{12}\\
& +C_{2}(x, \nu) f^{\prime}(x) f^{2}(x)+C_{3}(x, \nu) f^{3}(x)=0
\end{align*}
$$

where $C_{j}(x, \nu)$ are polynomials in x. Moreover, by (9) $C_{0}(x, \nu)$ $=-6 B_{0}(x, \nu) \neq 0$.

It therefore follows from (12) that $f^{\prime}(x) / f(x)$ is an algebraic function of x. However, since $f(x)$ has infinitely many zeros, it follows that the logarithmic derivative $f^{\prime}(x) / f(x)$ has infinitely many poles and therefore cannot be an algebraic function.

We have proved the following
Theorem. Let ν be an arbitrary complex number not equal to a negative integer and define $\omega_{n}(\nu)$ by means of (3). Then $\omega_{n}(\nu)$ cannot satisfy a recurrence

$$
\sum_{j=0}^{k} A_{j}(n, \nu) \omega_{n+j}(x)=0 \quad(n>N)
$$

where the $A_{j}(n, \nu)$ are polynomials in n with complex coefficients and k, N are fixed.

