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It is the purpose of this note to extend C. S. Hsii's theorem [4]

to n dimensions, n S; 2. In order to do that we make use of the computa-

tions of [3, pp. 89-90].

Notations. Mi, M2 are «-dimensional closed orientable Riemannian

manifolds of class C3, imbedded in n + l dimensional Euclidean space.

A2 is the second differential operator of Beltrami. Ai is the operator

defined by

da    do-
Aicr = g'>-

dx'   dx'

As usual, gij is the positive-definite metric tensor of Mi and (g*')

= iia)~1> R = gi'R<j, where Ra is the Ricci tensor. We also use re-

peated index for summation. We denote corresponding elements of

M2 by attaching accents.

Lemma [5, p. 30]. In a compact Riemannian manifold with posi-

tive-definite metric, if a function a satisfies

A2a ^ 0

everywhere in the manifold, then a is a constant.

Theorem. Given Mi, M2 with positive R, R', respectively, and a

diffeomorphism h: Mi-^>M2 which preserves RI. (I is the first funda-

mental form.) Then h is a similarity.

Proof. It is sufficient to show that h followed by a homothetic

transformation is a rigid motion. We first show that I'/I is a con-

stant. Let I'/I = R/R' = e2". Then g¿=e2'g«. By [3, pp. 89-90], we

have

(22 + 2(« - l)A*r + in- 1)(» - 2)A«r) = R'e2*.

Making use of the hypothesis, we obtain

A2o- = - {in- 2)/2}Aic.

Since Ai<r ̂ 0,

-A*r = Ai(-ff) = {in- 2)/2}Ai<7 ^ 0.
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1 The author is indebted to C. S. Hsii for his suggestions.
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By the lemma, a is a constant. Consequently, I'/I is also a constant.

Now we divide the proof into two different cases.

Case 1. For « = 2, the fact that h followed by a homothetic trans-

formation of a proportionality constant (R'/R)~112 is the desired rigid

motion follows from Cohn-Vossen's theorem.

Case 2. For «>2, the above fact follows from a different argument

(cf. [l, pp. 26-27]). It says that isometric hypersurfaces in Euclidean

space of dimension greater than three are congruent or symmetric.
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