- 3. R. Doss, On bounded functions with almost-periodic differences, Proc. Amer. Math. Soc. 12 (1961), 488-489.
- 4. L. H. Loomis, An introduction to abstract harmonic analysis, Van Nostrand, New York, 1953.

OHIO STATE UNIVERSITY

RESTRICTIONS OF FOURIER-STIELTJES TRANSFORMS

JAMES WELLS

1. Let G be a locally compact group with dual group Γ , and let dx and dy be the Haar measures on G and Γ , respectively. For a function $f \in L^1(G)$, the group algebra of G, the Fourier transform of f is denoted by \hat{f} :

$$\hat{f}(y) = \int_{a} (x, y) f(x) dx;$$

and for a measure $\mu \in M(G)$, the algebra of bounded measures on G, the Fourier-Stieltjes transform of μ is denoted by $\hat{\mu}$:

$$\widehat{\mu}(y) = \int_{G} (x, y) d\mu(x).$$

Here (x, y) denotes the value of the character $y \in \Gamma$ at the point $x \in G$. Let A denote the family of Fourier transforms of functions $f \in L^1(G)$. For $F \subset \Gamma$, $\hat{f} \mid F$ denotes the restriction of \hat{f} to F and $A \mid F = \{\hat{f} \mid F: \hat{f} \in A\}$. A function φ on Γ is said to be a multiplier of A provided $\varphi A \subset A$. It is a theorem of Helson's [2, Theorem 1] that the multipliers of A are precisely the Fourier-Stieltjes transforms. We are going to show that the obvious analogue persists on closed subsets of Γ , i.e., the multipliers of $A \mid F$ are precisely the almost everywhere restrictions to F of Fourier-Stieltjes transforms.

THEOREM. Suppose φ is a function on Γ and $F \subset \Gamma$ is closed. In order that $\varphi \mid F = \widehat{\mu} \mid F$ almost everywhere for some $\mu \in M(G)$, it is necessary and sufficient that

$$\varphi A \mid F \subset A \mid F.$$

Presented to the Society, January 26, 1963, under the title On function pairs related by a Fourier-Stieltjes transform; received by the editors January 31, 1963.

If F is taken to be Γ we have the aforementioned result of Helson, while with F compact the result is trivial since there exists an \hat{f} identically 1 on F. Of course this last assertion fails when F is noncompact. Thus our proof is actually designed for the case in which F is a proper, closed and noncompact subset of Γ .

2. Just as in [2], our proof ultimately rests on a theorem of Schoenberg [3]. However, the application we have in mind requires a mild alteration of the Schoenberg criterion. Following Eberlein [1] we say the function pair φ , $\eta \in L^{\infty}(\Gamma)$ satisfies the condition (S) provided there exists a constant M such that, for each $h \in L^1(\Gamma)$, the algebra of functions summable on Γ .

(S)
$$\left| \int_{\Gamma} h(y) \varphi(y) dy \right| \leq M \sup_{x \in G} \left| \int_{\Gamma} (x, y) h(y) \eta(y) dy \right| = M \|(h\eta)^{\gamma}\|_{\infty}.$$

With η identically 1, condition (S) is the Schoenberg criterion. Given a function $h \in L^1(\Gamma)$ we denote by $h^{\tilde{}}$ the function on G defined by

$$h^{-}(x) = \int_{\Gamma} (x, y)h(y)dy.$$

LEMMA. Condition (S) implies the existence of a μ in M(G) such that $\varphi = \eta \hat{\mu}$ almost everywhere.

PROOF. The family of functions $(h\eta)$ $(h\in L^1(\Gamma))$ is a subspace of $C_0(G)$, the sup norm Banach space of complex-valued continuous functions on G which vanish at infinity. We define (see [1, p. 466]) a functional ϕ on this subspace by

$$\phi((h\eta)^{-}) = \int_{\Gamma} h(y)\varphi(y)dy \qquad (h \in L^{1}(\Gamma)).$$

According to condition (S) this definition yields a well-defined linear functional. Via the Hahn-Banach theorem and the Riesz representation theorem we conclude that ϕ has an extension ϕ^* to $C_0(G)$, $\|\phi^*\| = \|\phi\| \le M$, which is represented by a measure μ on G with $\|\mu\| \le M$. So, for each $h \in L^1(\Gamma)$,

$$\int_{\Gamma} h(y)\varphi(y)dy = \int_{G} (h\eta)^{-}(x)d\mu(x) = \int_{G} \int_{\Gamma} (x,y)h(y)\eta(y)dyd\mu(x)$$
$$= \int_{\Gamma} h(y)\eta(y)\hat{\mu}(y)dy.$$

Hence $\varphi = \eta \hat{\mu}$ almost everywhere.

3. We are now in a position to establish the theorem. Only the sufficiency requires argument. First note that condition (H) implies φ is continuous relative to F. The set $kF = \{f: f \in L^1(G) \text{ and } \hat{f}(F) = 0\}$, the kernel of F, is a closed ideal in $L^1(G)$ and we can form the quotient space $L^1(G)/kF$ in which the norm of each element f+kF, $f \in L^1(G)$, is the usual quotient norm $||f+kF|| = \inf\{||f+u||_1: u \in kF\}$ under which $L^1(G)/kF$ becomes a Banach algebra.

In this quotient space setting condition (H) allows us to define a map U from $L^1(G)$ into $L^1(G)/kF$ by setting

$$U(f) = g + kF$$

if and only if

$$\hat{f}\varphi \mid F = \hat{g} \mid F.$$

Evidently U is linear. Let $f_n o f$ in the norm of $L^1(G)$ and $U(f_n) = g_n + kF o g + kF$ in the norm of $L^1(G)/kF$. According to the closed graph theorem, the continuity of U will follow if we can show that U(f) = g + kF. To this end observe that since $g_n - g + kF o 0$ in $L^1(G)/kF$ there exists a sequence u_n in kF such that $g_n - g + u_n o 0$ in $L^1(G)$. By hypothesis $\hat{f}_n \varphi \mid F = \hat{g}_n \mid F$, and since \mathcal{A}_n vanishes on F, $\hat{f}_n \varphi \mid F = (\hat{g}_n + \mathcal{A}_n) \mid F$. Convergence in $L^1(G)$ implies uniform convergence in A so, letting n tend to infinity in this last expression, we have $\hat{f} \varphi \mid F = \hat{g} \mid F$ or U(f) = g + kF. Let M denote the norm of U.

Choose a net $\{e_{\delta}\}$ running through an approximate identity in $L^{1}(G)$ and set $U(e_{\delta}) = \varphi_{\delta}' + kF$. Fix c greater than 1. Since $\|\varphi_{\delta}' + kF\|$ $\leq M\|e_{\delta}\|_{1} = M$ we can choose φ_{δ} in $\varphi_{\delta}' + kF$ such that $\|\varphi_{\delta}\|_{1} < cM$. By hypothesis the functions \hat{e}_{δ} converge to 1 uniformly on compact sets. This fact and the relation $\varphi\hat{e}_{\delta}\|F = \hat{\varphi}_{\delta}\|F$ imply that $\varphi = \lim \hat{\varphi}_{\delta}$ in the weak* topology of $L^{\infty}(F)$, i.e., if $h \in L^{1}(\Gamma)$ and η denotes the characteristic function of F,

$$\int_{\Gamma} h(y)\eta(y)\varphi(y)dy = \lim_{\delta} \int_{\Gamma} h(y)\eta(y)\hat{e}_{\delta}(y)\varphi(y)dy$$
$$= \lim_{\delta} \int_{\Gamma} h(y)\eta(y)\hat{\varphi}_{\delta}(y)dy = \lim_{\delta} \int_{G} (h\eta)^{-}(x)\varphi_{\delta}(x)dx.$$

Hence

$$\left| \int_{G} h(y) \eta(y) \varphi(y) dy \right| \leq c M \| (h\eta)^{-} \|_{\infty}.$$

Letting $c \rightarrow 1$ we have

$$\left| \int_{G} h(y) \eta(y) \varphi(y) dy \right| \leq M \| (h\eta)^{-} \|_{\infty}.$$

But this is just condition (S) with φ replaced by $\eta \varphi$ so, by the lemma, there exists a μ in M(G) such that $\eta \varphi = \eta \hat{\mu}$ almost everywhere or $\varphi \mid F = \hat{\mu} \mid F$ almost everywhere. This completes the proof.

4. It is worthwhile to notice that this result applies to pairs of functions related by a Fourier-Stieltjes transform. Suppose we are given functions φ , η on Γ with the property $\varphi A \subset \eta A$. Then $(\varphi/\eta)A \mid F \subset A \mid F$, where F denotes the closure of $\{y: y \in \Gamma \text{ and } \eta(y) \neq 0\}$. By the theorem there exists a μ in M(G) such that $(\varphi/\eta) \mid F = \hat{\mu} \mid F$; and since φ vanishes everywhere η does, the relation $\varphi = \eta \hat{\mu}$ holds almost everywhere.

REFERENCES

- 1. W. F. Eberlein, Characterizations of Fourier-Stieltjes transforms, Duke Math. J. 22 (1955), 465-468.
- 2. H. Helson, Isomorphisms of abelian group algebras, Ark. Math. 2 (1953), 475-487.
- 3. I. J. Schoenberg, A remark on the preceding note by Bochner, Bull. Amer. Math. Soc. 40 (1934), 277-278.

University of Kentucky