
A THEOREM OF GRACE ON THE ZEROS
OF POLYNOMIALS, REVISITED

J. L. WALSH1

A theorem of Grace [l] has shown itself highly useful (e.g. [2]) in

the study of the geometry of the zeros of polynomials. We shall treat

not that theorem in full generality, but the following special case:

Lemma 1. If we have mk>0, Zmk=l, \otk\ ̂ 1, k=l, 2, • • • , «,

| z| > 1, then the equation in a

n

(1) IT (z — <**)"" = Z — a
Jfc-i

has a solution a which satisfies \a\ g 1. Indeed there exists such a solu-

tion a satisfying

(2) min arg[(z — ak)/z] ^ arg[(z — a)/z] ^ max arg[(z — ak)/z],
t t

where these three arguments are values of any arg[(z— ß)/z] chosen con-

tinuous for fixed z and for all ß with \ß\ ^1.

The latter part of Lemma 1 is unusual, but is to be established

below. Lemma 1 is valid [2, Theorem III] without the hypothesis

|z| >1 if (2) is omitted.

If the mk and ak are fixed in Lemma 1 and | z| is large, the point a

(which depends on z, with |a| ^ 1) lies near the center of gravity of

the ak, as we see by writing (1) in the form

Ew*logi 1-j

« -H-7-m-j(i)'-]
-('-t)-[-T-7(t),-7(t)'--]'

yet this important fact is not mentioned in Lemma 1. The purpose

of this paper is to prove, and to apply in illustrative cases, a revision

of Lemma 1 :
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Lemma 2. If we have mk>0, EW*=L |«*|=1> ^mkak = 0, \z\>l

(where k=l, 2, 3, •• -, re) then there exists an a such that \a\ ^l/|z|,

with

(4) 2>*iog(i-Y) = 1°g(i-7)'

where arg(l— a/z) may be chosen as in (2).

Precisely the remark already made, that for large |z| the point a

lies near the center of gravity of the ak, applies also to another

lemma which is of frequent use in the study of the geometry of zeros

of polynomials, namely

Lemma 3. If we have mk>0. ^mk=l, \ak\ gl, ¿=1, 2, • • • , re,

| z| > 1, then a as defined by the equation

(5) È-=——
k-i z — ak      z — a

satisfies | a | ^1.

The analogue of (3) is here the equivalent of (5) :

:,+7+(t)!+•■■]

i    i
Z — a       Z

As the author has recently indicated [4], there exists a modification

of Lemma 3 which bears precisely the same relation to Lemma 3

that Lemma 2 bears to Lemma 1 :

Lemma 4. Under the conditions of Lemma 3 and with ^mkak = 0,

we have \a\ i£l/|z|.

Before proceeding with the proof of Lemma 2 we remark that the

unit disk | f | < 1 is mapped conformally onto a convex region R of

the if-plane by the transformation w = log (1—f). It follows that the

image Rr in the w-plane of the disk | f | ^r (<l) is also convex.

Equation (4), which defines a, expresses log(l— a/z) in the w-

plane as the center of gravity of the weighted points w = log (1 —ak/z)

of R. To prove Lemma 1 it is sufficient to choose z= 1/r, where r is

less than unity. Here we have | ak/z\ ¿r, so all points log (1 —ak/z) lie

in Rr as does their center of gravity. That is, log (1 —a/z) lies in Rr and

(to return to the f-plane) Ç = a/z satisfies |a/z| ^r, whence |a| ^1.

mk -z »Ik

ak

a       i a\2
+ 7 + (7)+-"
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The last part of Lemma 1 follows at once, so Lemma 1 is established.

The proof of Lemma 1 as just given has not been previously pub-

lished in detail; this proof was outlined in [2, see Theorem III]. We

proceed with the proof of Lemma 2. For \z\ >l we set z' = l/z with

|z'| <1, and define a = a(z') by equation (4) in the form

(6) E mk log(l - akz') = log(l - az').

We choose aiz') as in the proof of Lemma 1, and it follows from

Lemma 1 that we have |a(z') | = 1. By the proof of Lemma 1 we may

write

«(«')« [l-IItt-«**')"*]/*'

s    1 -111 í — mkUkz' H-—-akz'  — ■ ■ ■ j     /  z',

a(0) = 0.

Schwarz's lemma applied to aiz') now yields

(7) | «|   ^ |z'|   =l/|z|,

so Lemma 2 is established.

We remark that if also EOT*Q* = 0i then we have a'(0)—0, and

there follows |a|^l/|z|2. A similar remark follows if we have

a"(0)=0, etc.

It is to be mentioned that there exists no number X ( < 1) such that

for all z with |z| > 1 inequality (7) can be replaced by

(8) |a|   áX/|s|

with the hypothesis of Lemma 2. Indeed we choose z>l, « = 2,

mx = m2, ai=l, «2= — 1, so there follows

(z- l)(z+l) = z2 - 1 = (z - a)2

a = z — y/iz2 — 1).

When z—»1, we have a—>1, which contradicts (8).

In the special case just considered except that «i= — a2, laj =1,

and \z\ >1, we have
2 2

(z — ai)(z + ai) = (z — a) ,        ax = a(2z — a),

(9) | a(2z - a) |   =1.

It follows that the locus of a is one oval of lemniscate (9), and we

have max |a| = |z| -(|*| 2-l)1/2, min \a\ = (|z| 2 + l)1/2-|z|. If we

require merely ai= —a2, |«i| = 1, the locus of a is the closed interior

of the same oval of (9).
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The proof of Lemma 4, announced in [3] and hitherto unpublished,

is primarily geometric in character and relatively involved. The com-

paratively simple proof published in [4] results from later sugges-

tions made to the present writer by Mr. S. Jacobs, Professor L.

Carleson, and Dr. Z. Rubinstein. The present proof of Lemma 2 is

quite similar to the latter proof [4] of Lemma 4.

Lemmas 1 and 3 are the special cases /(£")—log (1—f) and /(£")

== 1/(1 — f) of the following proposition: Let w=/(f) be schlicht-convex

in |fj <1, hence also in \l\ <r (<1). Let z be fixed, \z\ >1, and sup-

pose \ak\ ^ 1, mk>0, E" mk=l. Then the equation in a

has a solution a = aiz) with \a\ is 1. This solution can be restricted so as

to be unique. Lemmas 2 and 4 are special cases of the corollary: If

^mkak = 0, then ai<x>) = 0, and we have |a(z)| ^l/|z| for \z\ >1.

Lemmas 2 and 4 have important differences. The latter determines

in fact for each even re and for every z with | z | > 1 the actual locus

of the point a, but Lemma 2 does not. Moreover each holds for | z| > 1

and not for |z| <1. This is not serious in Lemma 4, for if «>3 each

point of | z| < 1 is a possible multiple point ak and is ordinarily a point

of the locus of zeros of the polynomial studied, but not so in the ap-

plications of Lemma 2, where the point set |z| ^1 requires separate

and independent study, perhaps with the aid of the (valid) first part

of Lemma 1, but involving now |z| SI and without the conclusion

concerning arg (1— a/z).

Inequality (7) is not sharp, and we indicate rapidly a slight im-

provement. Let us set 4>iz') = s.mk log(l — ak — z'), ipi2') = 1

-exp[<Kz')], z' = l/z, ^"(0)=-rp"(0)= J2mkC(l = b, whence |ô| £1.
We set also *(z') =yf>iz') -bz'2/2, whence ^(0) = ^'(0) = *"(0) = 0, and

for | z' | < 1 we have | ^(z') | < 1 +1 b | /2. Schwarz's lemma then yields,

for |z'| <1,

bz'21      / I í | \ ,

*°°—rl*(1+a )"h
i i       !      >       I bz'21      /       \b I \,    .
|*(*0| = M íi^-^+^l + ̂ jkK

I «I = M2 + ̂ (kl + M2);

when z' = 0 this inequality still holds, with a = 0, so we have
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,i 1 I*     /    1 1    \ 1 3
(io)      \a\ ^_— + J-J-(—T + T-r)á-¡-i + -T-r-

|z|2 2    \|z| |z|2/      2|z|      2|z|2

The extreme members of (10) give a stronger inequality than (7)

whenever we have |z| >3.

We turn now to some relatively immediate applications of Lemma 2.

Theorem 1. Suppose \ak\ =1 for k=l, 2, • • • , «, with Ea* = 0¡

we set piz) = IT(Z — a*) ~ C, where the constant C is arbitrary. Then for

\z\ g 1 all zeros of piz) lie in the « circles | z — Clln\ ¿ 1 and for | z| > 1

in the n lemniscate regions

(11) | ziz - C1'«) |   = 1,

where Clln takes all n values.

For |z| ^1 we apply the analogue [2, Theorem III] of Lemma 1

involving merely |a\ ^ 1 ; if piz) = 0 we have

(z - a)" - C = 0,

whence a = z— Clln, so the first part of the conclusion follows. For

|z| > 1 we apply Lemma 2, to obtain |a| ál/|z|,

\z - C1'"!   = 1/| z\ ,

and (11) follows. Thus all zeros of piz) lie in the parts (if any) of the

n discs |z— Clln\ 5=1 contained in the closed unit disc plus the parts

(if any) of the regions (11) contained in the exterior of the unit disc.

Any intersection of the set (11) with the unit circumference lies in one

of the « discs, and conversely, any intersection of one of the « discs

with the unit circumference lies in one of the sets (11), so the bound-

aries of the « discs join continuously with the boundaries of the

respective n lemniscate regions. However, if we have | C\ >2n, the «

discs lie exterior to the unit disc; all zeros of piz) lie in the « regions

consisting each of the closed interior of that oval of a lemniscate (11)

containing C1'". It is readily shown by the method of continuity that

if these latter « regions are mutually disjoint, each contains precisely

one zero of piz). Even if we have 1< | C\ <2n, it may occur that the

point set already described as containing all zeros of piz) falls into «

mutually disjoint closed regions, each bounded in part by an arc in

|z| =1 of a circle |z— Clln\ and in part by an arc in |z| >1 of the

corresponding lemniscate; in this case, too, each such closed region

contains precisely one zero of piz).

It may be noted that if \C\ <2n the lemniscate |z(z— Clln)\ =1

consists of a single Jordan curve, whereas if \C\ >2n it consists of
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two mutually exterior ovals contained in the respective closed discs

whose centers are zero and Cu", having the common radius

[C11"— (C2/n — 4)1/2]/2, a radius less than unity. This radius ap-

proaches zero as | C1,n| becomes infinite, in great contrast to the cor-

responding locus [2, Theorem V] yielded by application of the first

part of Lemma 1 but for | z| > 1, which consists of discs whose centers

are the points C11" and which have the common radius unity.

We state another application of Lemma 2, related to Theorem IV

of [2].

Theorem 2. Suppose we have \ak — a\ ijri and \ßk — b\ ^r2, ¿= 1, 2,

• • -, re, with  Ea* = na,   Eft = nb.  We set p(z) =  JJ(z — ak)
— AY\_iz—ßk), where A is an arbitrary constant.  Then if A^l  all

zeros of p(z) lie in the re loci

(12)

a - bA1'"

1 - A1'"
1 - A1"] fi-min|

\     I z - a\/

+ r2\ ¿l^-min/l,      "      )
\    \z — b\/.

where A11" is in turn each nth root of A.

If A = 1 and we have

(13) ri-minin(l,-¡-—r) + r2-min(l,--2—-r)
\    \z — a\l \     \z—b\/

> \a-b\

then all zeros of p(z) lie in the n — l loci (12) where A11" is in turn each

nth root of unity except unity. If A = 1 and (13) is false, we draw no

conclusion concerning the location of z.

The boundary of the locus (12) consists formally of four algebraic

curves. If ri = 0 these curves are either circles or lemniscates, perhaps

degenerate. If a = b each of these curves is either obviously a circle

or (12) has the form

(14) z- a\  S Bi +
B2

z — a\
Bi è 0, B2 à 0,

which can be written

(15)

1      Bi      1      2 1/2
«-«I-+ -(üi + 4B.)

.[|,-.|-£-i(jí+«0»]ao.
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If 7Î2 = 0, (14) defines a disc; if 752>0, the first factor of (15) is auto-

matically positive for all z; thus (14) defines a circular disc.

The proof of Theorem 2 is similar to that of Theorem 1 and is left

to the reader. However, we remark that the proof continually involves

equations of the form

(16) z - a = Allniz - ß),    A11" ^ l;       z - a = z - ß.

When a and ß are known to lie in given discs, the first of equations

(16) implies that z lies in a related disc as in (12); but the second

equation implies no conclusion concerning the location of z if the

given discs containing a and ß are not disjoint, and is an impossibil-

ity (z does not exist) if those discs are disjoint.
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