THE SHARPNESS OF SARIO'S GENERALIZED PICARD THEOREM¹

BURTON RODIN²

We present here the example referred to in L. Sario [1; 2] which establishes the sharpness of his extensions of Picard's theorem. The nonintegrated estimate for the number of Picard values appears in [1], the integrated estimate in [2]. We use the notation introduced in these two papers.

The Riemann surface W will be described as an n-sheeted ramified covering of the nonextended z-plane. Consider n copies of this plane slit along the rays $\{\text{Re }z<0,\ \text{Im }z=2\pi ih\}_{h=0,\pm 1},\ldots$ Among these sheets identify the edges of the slits which belong to the same value of h so that $2\pi ih$ is a branch point of multiplicity n. The resulting surface has the capacity function $p=n^{-1}\log|z|$. The meromorphic function

$$w = \left(\frac{e^{z+\pi i}}{e^{z+\pi i}+1}\right)^{1/n}$$

is admissible. It omits the origin and the n values $e^{2\pi i h/n}$. The poles are at $z=2\pi i h$. W_m is the set $\{|z| \le e^{2\pi n m}\}$ lifted to W. Let Δ be a small neighborhood of ∞ in the w-plane. Using Hurwitz' formula one obtains

$$e_m^+ \sim (n-1)e^{2\pi nm}/\pi,$$
 $n_m(\Delta) \sim e^{2\pi nm}/\pi,$
 $\epsilon = \limsup \frac{e^+}{S} \le \limsup \frac{e_m^+}{n_m(\Delta)} = n-1.$

But $\epsilon+2$ is never less than the number P of Picard values which is n+1. Consequently $\epsilon=n-1$ and the nonintegrated form of the generalized Picard theorem is sharp for every $P \ge 2$.

The computations for the integrated form give

Received by the editors February 27, 1963.

¹ Supported by the Air Force Office of Scientific Research and the U. S. Army Research Office (Durham) under contract no. DA-04-495-ORD-1959.

² This example appeared in the author's doctoral dissertation submitted to the University of California, Los Angeles.

$$E(k) \sim (n-1)e^{2\pi nk}/2\pi^2 n,$$

$$N(k, \infty) \sim e^{2\pi nk}/2\pi^2 n,$$

$$\eta = \limsup E(k)/T(k) \le \lim E(k)/N(k) = n-1.$$

It follows that the integrated estimate $P \le 2 + \eta$ is also sharp for $P \ge 2$.

REFERENCES

- 1. L. Sario, Islands and peninsulas on arbitrary Riemann surfaces, Trans. Amer. Math. Soc. 106 (1963), 521-533.
- 2. ——, Meromorphic functions and conformal metrics on Riemann surfaces, Pacific J. Math. 12 (1962), 1079-1098.

HARVARD UNIVERSITY