A SIMPLE CONSTRUCTION OF ANALYTIC FUNCTIONS WITHOUT RADIAL LIMITS

DAVID G. CANTOR

The purpose of this note is to give a simple construction of a class of functions, analytic in the unit disc, having radial limits nowhere. We first prove, as a lemma, an easy Tauberian theorem, and use it to establish our result.

Let $n_1 < n_2 < n_3 < \cdots$ be an increasing sequence of positive integers satisfying

(1)
$$\frac{r_k^{n_{k+1}}}{1-r_k} \leq \frac{1}{2^k}, \qquad k=1, 2, 3, \cdots,$$

where r_k is defined as the positive solution of $r_k^{n_k} = 1 - 2^{-k}$. Such a sequence can easily be constructed by induction. Clearly $\lim_{k \to \infty} r_k = 1$; and if $k \le j$, then $1 - r_j^{n_k} \le 1/2^j$.

LEMMA. Suppose a; is a bounded sequence of complex numbers satisfying

$$\lim_{r\to 1-} \sum_{k=1}^{\infty} a_k r^{n_k} = s.$$

Then

$$\sum_{k=1}^{\infty} a_k = s.$$

PROOF. Let A be a bound for the a_k . Then

$$\left| \sum_{k=1}^{j} a_{i} - \sum_{k=1}^{\infty} a_{k} r_{j}^{n_{k}} \right| \leq \left| \sum_{k=1}^{j} a_{k} (1 - r_{j}^{n_{k}}) \right| + \left| \sum_{k=j+1}^{\infty} a_{k} r_{j}^{n_{k}} \right|$$

$$\leq A j / 2^{j} + A / 2^{j}.$$

THEOREM 1. Suppose $\{b_k\}$ is a bounded sequence of complex numbers not satisfying $\lim_{k\to\infty} b_k = 0$. Then, if n_k satisfies (1), $f(z) = \sum_{k=1}^{\infty} b_k z^{n_k}$ is analytic in the unit disc, and f(z) has radial limits nowhere.

PROOF. Clearly, f(z) is analytic in |z| < 1. Suppose f(z) has a radial limit at $z = e^{i\theta}$, i.e.,

Received by the editors November 2, 1962 and, in revised form, February 12, 1963.

$$\lim_{r\to 1-} \sum_{i=1}^{\infty} b_i e^{in_i\theta} r^{n_i}$$

exists. By the Lemma,

$$\sum_{i=1}^{\infty} b_{i}e^{in_{i}\theta}$$

exists; hence $\lim_{j\to\infty} b_j = 0$, contradicting the hypothesis.

The following theorem was suggested by a question of M. H. Heins.

THEOREM 2. Let $\phi(r)$ be a continuous, strictly positive function, defined for $0 \le r < 1$, satisfying $\lim_{r\to 1^-} \phi(r) = \infty$; let $\{b_k\}$ be a bounded sequence of complex numbers not satisfying $\lim_{k\to\infty} b_k = 0$. Then, there exists an increasing sequence of integers $\{n_k\}$, such that $f(z) = \sum_{k=1}^{\infty} b_k z^{n_k}$ is analytic in the unit disc, has radial limits nowhere, and $\max_{|z|=r} |f(z)| \le \phi(r)$.

Proof. Choose the integer n_1 so large that

$$|b_1| r^{n_1} \leq 2^{-1}\phi(r),$$

for $0 \le r < 1$. Now, inductively, given n_k , choose n_{k+1} so large that (1) is satisfied, and that

(3)
$$|b_{k+1}| r^{n_{k+1}} \leq 2^{-k-1} \phi(r),$$

for $0 \le r < 1$. Then, by Theorem 1,

$$f(z) = \sum_{k=1}^{\infty} b_k z^{n_k}$$

is analytic in the unit disc and has radial limits nowhere. By (2) and (3),

$$\max_{|z|=r} |f(z)| \leq \sum_{k=1}^{\infty} |b_k| r^{n_k} \leq \sum_{k=1}^{\infty} 2^{-k} \phi(r) = \phi(r).$$

University of Washington