HARNACK'S INEQUALITY AND THEOREMS ON MATRIX SPACES¹

SHIH-HSIUNG TUNG²

1. Introduction. Let D denote the set of points formed by the class of $n \times n$ square matrices $z = (z_{jk})$ $(1 \le j, k \le n)$ of complex numbers for which the Hermitian matrices $I-zz^*$ are positive definite, where $z^* = \overline{z}'$ and I, z' and \overline{z} denote the identity, transposed and complex conjugate matrices, respectively. For simplicity, we use H > 0 and $H \ge 0$ to mean that the Hermitian matrix H is positive definite and positive semi-definite, respectively. Thus, $D = \{z: I-zz^* > 0\}$. The variable z may be considered as a point in Euclidean space E_{2n}^2 of $2n^2$ real dimensions. By defining a neighborhood of a point z, for example, as the set of points w such that $|w_{jk}-z_{jk}| < \epsilon$ for arbitrary positive ϵ $(1 \le j, k \le n)$, it can be shown that the set D forms a convex bounded domain in E_{2n}^2 . Let B denote the set of all $n \times n$ unitary matrices u. Thus the set B has dimension n^2 and B is a proper subset of the boundary of D. The closure of D is $\overline{D} = \{z: I-zz^* \ge 0\}$.

Here we consider the differential operator [3; 4]

(1)
$$\Delta = \sum_{j,k=1}^{n} \sum_{p,q=1}^{n} \left(\delta_{jp} - \sum_{r=1}^{n} z_{pr} \bar{z}_{jr} \right) \left(\delta_{kq} - \sum_{s=1}^{n} z_{sq} \bar{z}_{sk} \right) \frac{\partial^{2}}{\partial \bar{z}_{jk} \partial z_{pq}}.$$

A real-valued function ϕ possessing continuous first and second derivatives is said to be harmonic on D if

(2)
$$\Delta \phi(z) = 0, \quad z \in D.$$

Hua has defined ϕ to be harmonic on the closure \overline{D} of D, if it has continuous first and second partial derivatives on D, is continuous on \overline{D} and satisfies (2) on $\overline{D}-B$ in the sense explained in [3, p. 1054]. It has been proved by Mitchell [4, p. 413] that if f is a real continuous function defined on B then the Poisson integral exists and is given by

(3)
$$\int_{R} f(u) P(z, u) dV,$$

where dV is Euclidean volume element on B and P(z, u) is the Poisson kernel

Received by the editors November 15, 1962 and, in revised form, March 1, 1963.

¹ This is a portion of the author's thesis (1962) at Pennsylvania State University under the direction of Professor Josephine Mitchell.

² This work was partially supported by an Air Force Research Grant.

(4)
$$P(z, u) = \frac{1}{V} \left(\frac{\det(I - zz^*)}{\det((I - zu^*)(I - uz^*))} \right)^n$$

and V is the Euclidean volume of B. Formula (3) gives a harmonic function of z on D [4]. Since the Dirichlet problem is unique [3, p. 1057] with respect to functions harmonic on \overline{D} as defined by Hua, any function ϕ harmonic on \overline{D} can be expressed by means of the Poisson integral (3), where $f(u) = \phi(z) \mid B$ is continuous on B. It is also proved [4, p. 411] that P(z, u) is harmonic for z in D and u in B. Furthermore P(z, u) is positive on D.

In this paper we obtain upper and lower bounds of

$$\det((I-zu^*)(I-uz^*))$$

for fixed z in D and u ranging over B using the method of Lagrange multipliers. Though the upper bound of the determinant can be obtained easily by the well-known Hadamard's determinant theorem [1, p. 161], Lagrange's method enables us to get both bounds simultaneously. From these bounds we obtain upper and lower bounds of the Poisson kernel on B. This leads to a generalization of Harnack's inequality for non-negative harmonic functions in the case of one complex variable to our case. The so-called Harnack's first and second theorems are also established. The Harnack's inequality for the solutions of uniformly elliptic differential equations of second order in a domain of dimension $n \ge 2$ was obtained by J. Moser [5].

2. Harnack's inequality. In this section we find the absolute maximum and minimum of the Poisson kernel defined by (1.4) for fixed z in D and u ranging over B.

For $z \in D$ it is known that there exist two unitary matrices u_0 and v_0 such that $z = u_0 R v_0$, where R is a diagonal matrix $R = [r_k] = [r_1, r_2, \dots, r_n], 1 > r_k \ge 0, k = 1, 2, \dots, n$. Hence

(1)
$$\det(I - zz^*) = \det(I - RR^*) = \prod_{k=1}^{n} (1 - r_k^2),$$

where $r_k = r_k(z)$. Also

$$\det((I - zu^*)(I - uz^*)) = \det((v - R)(v^* - R)),$$

where $v = u_0^* u v_0^*$ is also a unitary matrix which ranges over the set B. Thus we wish to find the maximum and the minimum of

$$\det((v-R)(v^*-R))$$

on B for fixed R. Let

$$(2) f = A \overline{A},$$

where

(3)
$$A = \det(v - R) = \det(v_{jk} - \delta_{jk}r_j)$$

and $v_{jk} = x_{jk} + iy_{jk}$. Thus f is a polynomial in x_{jk} and y_{jk} $(1 \le j, k \le n)$ and takes its absolute maximum and minimum on B because it is a continuous function of x_{jk} and y_{jk} and B is a compact set in E_{2n^2} . Since $v \in B$, the set of $n \times n$ unitary matrices, we have the following n^2 conditions:

$$f_{jk} = \sum_{t=1}^{n} (x_{jt}x_{kt} + y_{jt}y_{kt}) - \delta_{jk} = 0 \qquad (1 \le j \le k \le n),$$

$$g_{jk} = \sum_{t=1}^{n} (x_{jt}y_{kt} - x_{kt}y_{jt}) = 0 \qquad (1 \le j < k \le n).$$

Here we can find the maximum and minimum of f on B by Lagrange's method because it may be shown that (2) and (4) satisfy the hypotheses of a theorem in [1, p. 153]. Now, in order to apply Lagrange's method we set

(5)
$$F = A \overline{A} + \sum_{j,k=1; j \leq k}^{n} \lambda_{jk} f_{jk} + \sum_{j,k=1; j < k}^{n} \mu_{jk} g_{jk},$$

where λ 's and μ 's are real numbers. Here, for convenience of later computation, we again introduce the complex expressions

(6)
$$\phi_{jk} = \sum_{t=1}^{n} v_{jt} \bar{v}_{kt} - \delta_{jk} = 0 \qquad (1 \leq j, k \leq n),$$

where $\phi_{kj} = \bar{\phi}_{jk}$,

(7)
$$f_{jk} = \frac{1}{2} (\phi_{jk} + \phi_{kj}), \qquad g_{jk} = \frac{1}{2i} (\phi_{kj} - \phi_{jk}).$$

Substituting (7) into (5) we get, after some rearranging,

(8)
$$F = A \overline{A} + \sum_{j,k=1}^{n} \nu_{jk} \phi_{jk},$$

where $\nu_{jk} = \frac{1}{2}(\lambda_{jk} + i\mu_{jk})$ for $j \neq k$, $\nu_{kj} = \bar{\nu}_{jk}$ and $\nu_{jj} = \lambda_{jj}$. We also introduce the differential operators

$$\frac{\partial}{\partial v_{jk}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{jk}} - i \frac{\partial}{\partial y_{jk}} \right) \text{ and } \frac{\partial}{\partial \bar{v}_{jk}} = \frac{1}{2} \left(\frac{\partial}{\partial x_{jk}} + i \frac{\partial}{\partial y_{jk}} \right),$$

noting that $\partial F/\partial x_{jk} = 0 = \partial F/\partial y_{jk}$ implies $\partial F/\partial v_{jk} = 0 = \partial F/\partial \bar{v}_{jk}$ and conversely.

Now differentiate F in (8) with respect to v_{jk} and \bar{v}_{jk} instead of differentiating F in (5) with respect to x_{jk} and y_{jk} . From (8) and (6) we get

(9)
$$\frac{\partial F}{\partial v_{it}} = A_{jt}\overline{A} + \sum_{k=1}^{n} \nu_{jk}\overline{v}_{kt},$$

where A_{jt} is the algebraic complement (the cofactor) of the element $v_{jt} - \delta_{jt}r_{j}$ in the determinant A. By setting $\partial F/\partial v_{jt} = 0$, multiplying the right-hand side of (9) by v_{st} and summing t from 1 to n, and from (3) and (6) we obtain

$$(10) -\nu_{jk} = r_k A_{jk} \overline{A} + \delta_{jk} A \overline{A}.$$

Similarly, calculating $\partial F/\partial \bar{v}_{jk}$, setting it equal to zero, multiplying the right-hand side by \bar{v}_{st} and summing t from 1 to n, we get

$$(11) -\nu_{jk} = r_j \overline{A}_{kj} A + \delta_{jk} A \overline{A}.$$

Comparing (10) and (11) we obtain

$$(12) r_k A_{jk} \overline{A} = r_j \overline{A}_{kj} A.$$

Next, substituting v_{jk} of (11) into (9) and setting $\partial F/\partial v_{jt} = 0$,

$$(13) A_{jt}\overline{A} - r_{j}A \sum_{k=1}^{n} \overline{v}_{kt}\overline{A}_{kj} - \overline{v}_{jt}A\overline{A} = 0.$$

Here by using (3), (12) and (13) we obtain

(14)
$$A_{ik} = A(\bar{v}_{ik} + \delta_{ik}r_k)/(1 - r_k^2)$$

since $A \neq 0$ for $z \in D$ and $v \in B$ [4, p. 410] and $r_i \neq 1$. Thus

$$1/A = A^{-n} \det(A_{jk}) = A^{-n} \det(A(\bar{v}_{jk} + \delta_{jk}r_k)/(1 - r_k^2))$$
$$= \det(\bar{v}_{jk} + \delta_{jk}r_k) / \prod_{k=1}^{n} (1 - r_k^2).$$

By setting $B = \det(\bar{v}_{jk} + \delta_{jk}r_k)$, we have $AB = \prod_{k=1}^n (1 - r_k^2)$. Here since r_k occurs to at most the first power for each k in A and B and by unique factorization, A contains one and only one factor of $(1+r_k)(1-r_k)$ for each $k=1, 2, \cdots, n$. Hence $A\overline{A} = \prod_{k=1}^n (\epsilon_k - r_k)^2$, where $\epsilon_k = +1$ or -1, are all the possible values of relative maximum and minimum of $A\overline{A}$. Thus from the existence of the absolute maximum and minimum we finally obtain

(15)
$$\prod_{k=1}^{n} (1 - r_k)^2 \leq A \overline{A} \leq \prod_{k=1}^{n} (1 + r_k)^2.$$

This, together with (1), gives the following theorem.

THEOREM 1. Let $z \in D$. Then

(16)
$$\prod_{k=1}^{n} \frac{1-r_k}{1+r_k} \le \frac{\det(I-zz^*)}{\det((I-zu^*)(I-uz^*))} \le \prod_{k=1}^{n} \frac{1+r_k}{1-r_k}$$

for all u in B, where $z = u_0 R v_0$, u_0 and v_0 unitary matrices and $R = [r_1, \dots, r_n]$ is a diagonal matrix with $1 > r_k \ge 0$, $k = 1, \dots, n$.

Thus we obtain bounds for the Poisson kernel (1.4) as

(17)
$$\frac{1}{V} \prod_{k=1}^{n} \left(\frac{1-r_k}{1+r_k} \right)^n \leq P(z, u) \leq \frac{1}{V} \prod_{k=1}^{n} \left(\frac{1+r_k}{1-r_k} \right)^n.$$

If we apply (17) to (1.3) with the assumption $f(u) \ge 0$ on B, then we obtain Harnack's inequality

(18)
$$\prod_{k=1}^{n} \left(\frac{1-r_k}{1+r_k} \right)^n \phi(0) \leq \phi(z) \leq \prod_{k=1}^{n} \left(\frac{1+r_k}{1-r_k} \right)^n \phi(0).$$

3. Harnack's theorems. Harnack's first theorem can be obtained immediately for the domain D as follows.

THEOREM 2. Let $\{\phi_p\}_{p\geq 1}$ be a sequence of real-valued functions, harmonic on \overline{D} , which converges uniformly on B. Then the limit function is harmonic on D.

PROOF. From the uniqueness of the Dirichlet problem each function $\phi_p(z)$ harmonic on \overline{D} can be expressed by means of the Poisson integral (1.3), that is,

$$\phi_p(z) = \frac{1}{V} \int_B \phi_p(u) P(z, u) dV, \qquad p = 1, 2, \cdots$$

Let $\lim_{p\to\infty} \phi_p(u) = \phi(u)$ on B. Since ϕ_p is continuous on B which is compact, ϕ is also continuous on B. Hence by uniform convergence of $\{\phi_p\}$ on B and boundedness of P(z, u) for fixed $z \in D$ and all $u \in B$,

$$\lim_{p \to \infty} \phi_p(z) = \lim_{p \to \infty} \frac{1}{V} \int_B \phi_p(u) P(z, u) dV$$
$$= \frac{1}{V} \int_B \phi(u) P(z, u) dV.$$

Therefore, $\lim_{p\to\infty} \phi_p(z)$ exists for $z\in D$ and is harmonic on D. Define a subdomain D_r , $1\geq r>0$, of D by $D_r=\{z\colon I-r^{-2}zz^*>0\}$.

LEMMA. Let $z=u[r_k]v$, where u and v are unitary matrices. Then $z\in \overline{D}_r$ if and only if $0\leq r_k\leq r$, $k=1, 2, \cdots, n$.

The necessary part of the proof follows from the fact that $z/r \in \overline{D}$ for $z \in \overline{D}_r$. The sufficient part of the proof can be easily seen by noticing that $r^2I - zz^* = u\left[r^2 - r_k^2\right]u^*$.

THEOREM 3. If $\{\phi_p\}_{p\geq 1}$ is a monotone nondecreasing sequence of harmonic functions on \overline{D} , and if ϕ_p tends to a finite limit at z=0, then ϕ_p tends to a limit uniformly on \overline{D}_r , 0 < r < 1, and the limit function is harmonic on D.

PROOF. From the hypothesis that the sequence $\{\phi_p\}$ converges at z=0, Harnack's inequality and the lemma, it can be proved that $\{\phi_p\}$ converges uniformly on \overline{D}_r , 0 < r < 1. Secondly, setting $\psi_p = \phi_p - \phi_1$ on \overline{D} and applying (2.18) to $\psi_p(u)$ and a theorem on interchanging f and $\lim_{p\to\infty}$ in [2, p. 582], we obtain

$$\lim_{p\to\infty}\int_{R}\psi_{p}(u)dV=\int_{R}\lim_{p\to\infty}\psi_{p}(u)dV.$$

This implies

$$\lim_{n\to\infty}\int_{\mathbb{R}}\phi_p(u)dV=\int_{\mathbb{R}}\lim_{n\to\infty}\phi_p(u)dV=\int_{\mathbb{R}}\phi(u)dV.$$

This, together with (2.17), gives

$$\lim_{p\to\infty}\int_B P(z,u)\phi_p(u)dV=\int_B P(z,u)\phi(u)dV.$$

Therefore, since $\int_B P(z, u)\phi_p(u)dV = \phi_p(z)$ and $\phi(z) = \lim_{p\to\infty} \phi_p(z)$ it follows that $\phi(z) = \int_B P(z, u)\phi(u)dV$ and ϕ is harmonic on D.

REMARKS. (i) By using the left-hand inequality of (2.18) it can be proved that if $\phi_p(0)$ tends to ∞ as p tends to ∞ , then ϕ_p tends uniformly to ∞ on every \overline{D}_r , 1>r>0. Also it is not necessary to restrict z to be 0. (ii) It may be shown from the lemma that for any compact set $K \subset D$ there exists r, 1>r>0, such that $K \subset \overline{D}_r$.

With these remarks it follows that a general form of Harnack's second theorem on D is

THEOREM 4. Let $\{\phi_p\}_{p\geq 1}$ be a monotone nondecreasing sequence of harmonic functions on \overline{D} . Then there are only two possibilities: either

 ϕ_p tends uniformly to ∞ on every compact subset of D, or ϕ_p tends to a harmonic limit function ϕ on D, uniformly on every compact subset of D.

REFERENCES

- 1. T. M. Apostol, Mathematical analysis, Addison-Wesley, Reading, Mass., 1957.
- 2. E. W. Hobson, The theory of functions of a real variable, Vol. I, Dover, New York, 1957.
- 3. L. K. Hua and K. H. Look, Theory of harmonic functions in classical domains, Sci. Sinica 8 (1959), 1031-1094.
- 4. J. M. Mitchell, Potential theory in the geometry of matrices, Trans. Amer. Math. Soc. 79 (1955), 401-422.
- 5. J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591.

Miami University and The Pennsylvania State University