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1. Introduction. Let D denote the set of points formed by the

class of nX« square matrices z=(z¡k) (ISÍ1 k^n) of complex num-

bers for which the Hermitian matrices I — zz* are positive definite,

where 2* = z' and /, z' and z denote the identity, transposed and com-

plex conjugate matrices, respectively. For simplicity, we use H>0

and H^O to mean that the Hermitian matrix H is positive definite

and positive semi-definite, respectively. Thus, D= [z: I — 22*>0}.

The variable 2 may be considered as a point in Euclidean space Ei£

of 2m2 real dimensions. By defining a neighborhood of a point z, for

example, as the set of points w such that \wjk — zjk\ <e for arbitrary

positive e (1 ¿j, kiín), it can be shown that the set D forms a convex

bounded domain in E2n2. Let B denote the set of all «X« unitary

matrices u. Thus the set B has dimension n% and B is a proper subset

of the boundary of D. The closure of D is D= {2:1—22*^0}.

Here we consider the differential operator [3; 4]

n n       / n \    / n \ d2

(1) A   =     X)       S   ( Sjp  —   X) ZprZjr ) ( hq   —   S Z»î2»* ) ̂ -  •
y,jt-l   3>,3=1 \ r=l /  \ «=1 /   dZjkdZpq

A real-valued function <£ possessing continuous first and second de-

rivatives is said to be harmonic on D if

(2) A<2>(z) =0,        z G D.

Hua has defined 0 to be harmonic on the closure D of D, if it has con-

tinuous first and second partial derivatives on D, is continuous on D

and satisfies (2) on D — B in the sense explained in [3, p. 1054]. It

has been proved by Mitchell [4, p. 413] that if / is a real continuous

function defined on B then the Poisson integral exists and is given by

(3) f f(u)P(z, u)dV,
J B

where dV is Euclidean volume element on B and P(z, u) is the Pois-

son kernel
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1  / det(7 - ZZ*) \"
(4) P(z, u) = -( )

F\det((7 - zu*) (I - uz*))J

and V is the Euclidean volume of B. Formula (3) gives a harmonic

function of z on D [4]. Since the Dirichlet problem is unique [3,

p. 1057] with respect to functions harmonic on D as defined by Hua,

any function <j> harmonic on D can be expressed by means of the

Poisson integral (3), where f(u) =4>{z) \ B is continuous on B. It is

also proved [4, p. 411] that P(z, u) is harmonic for z in D and u in B.

Furthermore P(z, u) is positive on D.

In this paper we obtain upper and lower bounds of

det((I-zu*)(I-uz*))

for fixed z in D and u ranging over B using the method of Lagrange

multipliers. Though the upper bound of the determinant can be

obtained easily by the well-known Hadamard's determinant theo-

rem [l, p. 161], Lagrange's method enables us to get both bounds

simultaneously. From these bounds we obtain upper and lower

bounds of the Poisson kernel on B. This leads to a generalization of

Harnack's inequality for non-negative harmonic functions in the

case of one complex variable to our case. The so-called Harnack's

first and second theorems are also established. The Harnack's in-

equality for the solutions of uniformly elliptic differential equations

of second order in a domain of dimension n ^ 2 was obtained by J.

Moser [S].

2. Harnack's inequality. In this section we find the absolute maxi-

mum and minimum of the Poisson kernel defined by (1.4) for fixed

z in D and u ranging over B.

For z££> it is known that there exist two unitary matrices Mo and

Vo such that z = u0Rv0, where R is a diagonal matrix R = [rk]

= [fi, r2, ■ • • , rn], l>r*^0, k-í, 2, • • • , «. Hence

(1) det(J - zz*) = det(7 - RR*) = ¿ U ~ f*)>

where rk = rk(z). Also

det((7 - zu*) (I - uz*)) = det((» - R)(v* - R)),

where v = u*uv* is also a unitary matrix which ranges over the set B.

Thus we wish to find the maximum and the minimum of

det((» - R)(v* - R))

on B for fixed R. Let
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(2) / = Al,

where

(3) A = det(t) - R) = detfe - 5y*ry)

and vjk = Xjk+iyjk- Thus/ is a polynomial in xjk and Vy* (l^i, k^n)

and takes its absolute maximum and minimum on B because it is a

continuous function of xjk and yjk and B is a compact set in E2n'-

Since vE:B, the set of bX« unitary matrices, we have the following

m2 conditions:

n

/;* = X (*/«**« + yy(y*i) — 8yt = o     (i á y £ Ä û n),

»        T
£y* = S fe-«?« — *i«yyO = 0 (1 ái < * û n).

(-1

Here we can find the maximum and minimum of /on S by Lagrange's

method because it may be shown that (2) and (4) satisfy the hypoth-

eses of a theorem in [l, p. 153]. Now, in order to apply Lagrange's

method we set

(5) F = A 2 +     Ê    W* +     £    My*&»,
j,h-\;jik i,k-\;i<k

where X's and ju's are real numbers. Here, for convenience of later

computation, we again introduce the complex expressions

n

(6) 4>jk = Z) »j«»*« — iy* = 0       (1 á i, * á »),
i-i

where <pkj = $jk,

1 1
(7) /y* = — (0y* + 4>kj),        gjk = — (&/ — &*)•

2 2î

Substituting (7) into (5) we get, after some rearranging,

(8) F = AJ + ¿ vjk<t>ik,
i,k-l

where v¡k = \ (Kß-\-ißjk) for j ^ k, vk¡ — vjk and v¡¡=X#. We also introduce

the differential operators

d      i / d     . a \ a      i / a     . a \

ó»,*      2 \3xy4       ôyjt/ dvjk      2 \dXjk       dyjk/'
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noting that dF/dxjk = 0 = dF/dyjk implies dF/dVjk = 0 = dF/dvjk and
conversely.

Now differentiate F in (8) with respect to vjk and vjk instead of

differentiating F in (5) with respect to xjk and yjk. From (8) and (6)

we get

dF -A
(9) -= AjtA + 2^ »Höht,

dvjt i=i

where Ajt is the algebraic complement (the cofactor) of the element

Vjt—hjtfj in the determinant A. By setting dF/dvjt = 0, multiplying

the right-hand side of (9) by vst and summing t from 1 to n, and from

(3) and (6) we obtain

(10) -vjk = rkAjkA~ + 5jkAA.

Similarly, calculating dF/dv¡k, setting it equal to zero, multiplying

the right-hand side by v,t and summing t from 1 to n, we get

(11) -vjk = r¡AkjA + 5ikA 2.

Comparing (10) and (11) we obtain

(12) rkAjkA = r¡Ik¡A.

Next, substituting vjk of (11) into (9) and setting dF/dvlt = 0,

n

(13) AjtA — tjA X) htÄki - VjtAÄ = 0.

Here by using (3), (12) and (13) we obtain

(14) Ajk = A(vjk + 8jkrk)/(l - r¡)

since A ¿¿0 for z(E.D and vElB [4, p. 410] and r¡^í. Thus

Í/A = A~n det(Ajk) = A~" det(A(vjk + ÔJkrk)/(l - r¡))

= det(vjk + ôjkrk) I II (1 - rk).

By setting 5 = det(»yji! + Sy*ri), we have^45=H?_i (i — »*)• Here since

rk occurs to at most the first power for each k in A and B and by

unique factorization, A contains one and only one factor of

(l+ft)(l-r*) for each k=l, 2, • • • , ». Hence Al= ]JnK=1 {ek-rk)\

where ek= +1 or — 1, are all the possible values of relative maximum

and minimum of A A. Thus from the existence of the absolute maxi-

mum and minimum we finally obtain
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(15) ü tt-'*)*£ ¿¿a II tt+ '*)*•

This, together with (1), gives the following theorem.

Theorem 1. Let z£lD. Then

(i6)   n~^_^^_^n^
t-i  1 + rk      det((Z - zu*)(I — uz*))       k=1  1 - rk

for all u in  B,  where z = UoRvo,  u¡¡ and vo unitary matrices and

R = [ru • • • , rn] is a diagonal matrix with l>rA^0, k = 1, • • • , n.

Thus we obtain bounds for the Poisson kernel (1.4) as

ay)      -n(^Y^(2,^-n(^Y.
Vt=Al + rJ Vt=M-rJ

If we apply (17) to (1.3) with the assumption/(m) ^0on5, then we

obtain Harnack's inequality

a»)     ni^r-r—) *(o) ̂ m g n(-—) *(o).
*=i \ 1 + rj *=i \ 1 — rj

3. Harnack's theorems. Harnack's first theorem can be obtained

immediately for the domain D as follows.

Theorem 2. Let {<¡)p}pii be a sequence of real-valued functions, har-

monic on D, which converges uniformly on B. Then the limit function is

harmonic on D.

Proof. From the uniqueness of the Dirichlet problem each func-

tion <j>p(z) harmonic on D can be expressed by means of the Poisson

integral (1.3), that is,

VJ i
4>p(z) = —     <t>P(u)P(z, u)dV,       ¿=1,2,

B

Let \\mv^„4>p(u) =4>(u) on B. Since <¡>p is continuous on B which is

compact, <t> is also continuous on B. Hence by uniform convergence

of {<¡>P} on B and boundedness of P(z, u) for fixed z<E.D and all u<E:B,

i  r
lim <j>p(z) = lim — I  <j)p(u)P(z, u)dV

■n—* to « —► oo      V   J   RV

z, u)dV.— f <Ku)P(z
V   J  R
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Therefore, lim^a, <j>p(z) exists for z(E.D and is harmonic on D.

Define a subdomain Dr, l=r>0, of D by Dr= {z: l-r~2zz*>0}.

Lemma. Let z = u\rk\v, where u and v are unitary matrices. Then

zG-Dr if and only if 0^rk^r, k= 1, 2, • • • , n.

The necessary part of the proof follows from the fact that z/V£D

for z£ £>r. The sufficient part of the proof can be easily seen by noticing

that r2I-zz* = u[r2-rl]u*.

Theorem 3. If {<j>p}p¿i is a monotone nondecreasing sequence of

harmonic functions on D, and if 4>p tends to a finite limit at z = 0, then

<j>p tends to a limit uniformly on Dr, 0<r<l, and the limit function is

harmonic on D.

Proof. From the hypothesis that the sequence {<!>„} converges at

z = 0, Harnack's inequality and the lemma, it can be proved that

{4>P} converges uniformly on Dr, 0<r<l. Secondly, setting ipP

= <j)p — 4>\ on D and applying (2.18) to ^(«) and a theorem on inter-

changing / and limp,«, in  [2, p. 582], we obtain

lim   f 4>p{u)dV =   f  lim ̂ p{u)dV.
p —► w     •/  ß *J ß   p—*eO

This implies

lim   I  <t>p(u)dV =  j    lim <¡>p(u)dV =  j <¡>(u)dV.
p—*ae    *J ß J ß p—»oo d ß

This, together with (2.17), gives

lim   J  P(z, u)<t>p(u)dV =  j  P(z, u)<¡>(u)dV.
P—+QO      V    JJ t/   ß

Therefore, since JbP(z, u)4>p(u)dV=<f>p(z) and <f>(z) =limP.0O 4>p(z) it

follows that <f>(z) =fBP(z, u)<f>(u)dV and <¡> is harmonic on D.

Remarks, (i) By using the left-hand inequality of (2.18) it can be

proved that if (¡>p(0) tends to «> as p tends to «, then <j>p tends uni-

formly to a> on every Dr, 1 > r > 0. Also it is not necessary to restrict

2 to be 0. (ii) It may be shown from the lemma that for any compact

set K(ZD there exists r, l>r>0, such that K(ZDr.

With these remarks it follows that a general form of Harnack's

second theorem on D is

Theorem 4. Let {0p}pai be a monotone nondecreasing sequence of

harmonic functions on D. Then there are only two possibilities : either
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<j>p tends uniformly to » on every compact subset of D, or <j>p tends to a

harmonic limit function <j> on D, uniformly on every compact subset of D.
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