HARNACK’S INEQUALITY AND THEOREMS
ON MATRIX SPACES!

SHIH-HSIUNG TUNG?

1. Introduction. Let D denote the set of points formed by the
class of #X# square matrices z=(z;5) (1=j, k=) of complex num-
bers for which the Hermitian matrices I —2z* are positive definite,
where z*=3%" and I, 2’ and z denote the identity, transposed and com-
plex conjugate matrices, respectively. For simplicity, we use H>0
and H =0 to mean that the Hermitian matrix H is positive definite
and positive semi-definite, respectively. Thus, D= {z: I—3z2*>0}.
The variable z may be considered as a point in Euclidean space E,?
of 2n? real dimensions. By defining a neighborhood of a point 2, for
example, as the set of points w such that |w,~k—-—z,-k| < for arbitrary
positive € (1 =j, k<n), it can be shown that the set D forms a convex
bounded domain in Es,2. Let B denote the set of all #X#» unitary
matrices #. Thus the set B has dimension #? and B is a proper subset
of the boundary of D. The closure of D is D= {z: I —2z*=0}.

Here we consider the differential operator [3; 4]

1y A= i i (5,~,, - Z":z,,,z,-,) (ak, - ﬁjz,qg,k>_‘.9_2__ .

jk=1 p,g=1 r=1 a=1 0Z%02p4

A real-valued function ¢ possessing continuous first and second de-
rivatives is said to be harmonic on D if

@ A¢(z) =0, z€ D.

Hua has defined ¢ to be harmonic on the closure D of D, if it has con-
tinuous first and second partial derivatives on D, is continuous on D
and satisfies (2) on D— B in the sense explained in [3, p. 1054]. It
has been proved by Mitchell [4, p. 413] that if f is a real continuous
function defined on B then the Poisson integral exists and is given by

® J rwpe, way,

where dV is Euclidean volume element on B and P(z, «) is the Pois-
son kernel
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1 ( det(I — z2*) )"

@ Pl w) = T\ Q@ = o) (T — )

and V is the Euclidean volume of B. Formula (3) gives a harmonic
function of z on D [4]. Since the Dirichlet problem is unique [3,
'p. 1057] with respect to functions harmonic on D as defined by Hua,
any function ¢ harmonic on D can be expressed by means of the
Poisson integral (3), where f(u)=¢(z)|B is continuous on B. It is
also proved [4, p. 411] that P(z, %) is harmonic for z in D and % in B.
Furthermore P(z, ) is positive on D.
In this paper we obtain upper and lower bounds of

det((I —zu*)(I —uz*))

for fixed z in D and u ranging over B using the method of Lagrange
multipliers. Though the upper bound of the determinant can be
obtained easily by the well-known Hadamard’'s determinant theo-
rem [1, p. 161], Lagrange’s method enables us to get both bounds
simultaneously. From these bounds we obtain upper and lower
bounds of the Poisson kernel on B. This leads to a generalization of
Harnack’s inequality for non-negative harmonic functions in the
case of one complex variable to our case. The so-called Harnack's
first and second theorems are also established. The Harnack’s in-
equality for the solutions of uniformly elliptic differential equations
of second order in a domain of dimension #=2 was obtained by ]J.
Moser [5].

2. Harnack’s inequality. In this section we find the absolute maxi-
mum and minimum of the Poisson kernel defined by (1.4) for fixed
zin D and u ranging over B.

For 2ED it is known that there exist two unitary matrices %o and
9o such that z = %(Rv,, where R is a diagonal matrix R = [rk]
=[r, rs -+, 1], 1>720,k=1,2, - - -, n Hence

(1) det(I — zz*) = det(l — RR*) = [[ (1 — r0),
k=1
where 7. =7(2). Also

det((I — 24*)(I — uz*)) = det((v — R)(»* — R)),

where v=ud*uv* is also a unitary matrix which ranges over the set B.
Thus we wish to find the maximum and the minimum of

det((» — R)(»* — R))
on B for fixed R. Let
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(2) f= A4,
where
3) 4 = det(v — R) = det(vjx — dur;)

and v, =x;+1y; Thus f is a polynomial in xj and yi (1574, k<n)
and takes its absolute maximum and minimum on B because it is a
continuous function of x; and y; and B is a compact set in Eg?.
Since vE B, the set of # X7 unitary matrices, we have the following
n? conditions:

n

fir = 20 @pee + yiy) — 8 =0  (1Sj<k=n),
@ -
g = 2 (%iyee — %ueyje) = 0 1=j<k=n).

t=1

Here we can find the maximum and minimum of f on B by Lagrange's
method because it may be shown that (2) and (4) satisfy the hypoth-
eses of a theorem in [1, p. 153]. Now, in order to apply Lagrange’s
method we set

(5) F=A4+ 2 MNafa+ 2 witin
jk=L;isk i o=l 5<k

where N's and u's are real numbers. Here, for convenience of later
computation, we again introduce the complex expressions

(6) b = 2 v — =0 (157,k<mn),

t==1

where ¢kj = 5,'7;,

1 1
¢ fie = Py (b + d1i)y g = % (D5 — din)-
Substituting (7) into (5) we get, after some rearranging,
(8 F=A4d4 3 vadn,
gkl

where vjr =3\ +ipj) for j =k, vij="7; and v;;=M\;;. We also introduce
the differential operators

3 1.4 o a9 1.8 @
—=—(——-49—) and —=—(—+i—),
avjk 2 ax,-k 0k 0%jx 2 0% 0y
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noting that 0F/dx;=0=0F/dy;. implies dF/dv;=0=0F/d3; and
conversely.

Now differentiate F in (8) with respect to v and 7; instead of
differentiating F in (5) with respect to x; and yi. From (8) and (6)
we get
9) o A A+ 3 v,

v k=1
where A4, is the algebraic complement (the cofactor) of the element
v;s—8;,7; in the determinant 4. By setting 8 F/0v,;,=0, multiplying
the right-hand side of (9) by v,; and summing ¢ from 1 to #, and from
(3) and (6) we obtain

(10) —Vik = kaj),Z + 6jkA7f.

Similarly, calculating 0F/d%;, setting it equal to zero, multiplying
the right-hand side by %,; and summing ¢ from 1 to », we get

(11) —vpp = 1A A + 8 AA.

Comparing (10) and (11) we obtain

(12) rdpd = r,A4A.

Next, substituting »;; of (11) into (9) and setting d F/dv;,=0,

(13) Ajd — 1A Y 5 dy; — 5. A4 = 0.
k=1

Here by using (3), (12) and (13) we obtain

(14) Ap = A@n + b3 /(1 — 1)

since 4 #0 for zED and vEB [4, p. 410] and 7;5%1. Thus

1/4 = A" det(4,;) = A" det(A G + 1) /(1 — 7))

det(ﬁjk + 5,'],7’1;) H (1 - f:).
k=1

By setting B=det(#;z+38;s7:), we have AB= [ [r_, (1—73). Here since
7. occurs to at most the first power for each 2 in 4 and B and by
unique factorization, A contains one and only one factor of
(14+7r) (1 —n) for each k=1, 2, - - -, n. Hence A4 = [z, (ex—71)?,
where .= +1 or —1, are all the possible values of relative maximum
and minimum of 44. Thus from the existence of the absolute maxi-
mum and minimum we finally obtain
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(15) fI 1—-n)= A4 £ fI A+ )2

k=1 k=1
This, together with (1), gives the following theorem.
THEOREM 1. Let 2ED. Then
n n 1 _I_. 7%

1—1 det(I — 22%)
16 =< <
(16) kH,l 147 det(( — zu®){J — uz*)) ;,I-Il 1—1n

for all uw in B, where z2=u,Rv,, uo and v, unitary mairices and
R=[n, - - -, r.] is a diagonal matrix with 1 >r, 20, k=1, - - - , n.

Thus we obtain bounds for the Poisson kernel (1.4) as

1 1 — rn\* 1 -~ 1 4+ n\»

17 — < > < P(z,u) < — ( ) .
( ) V kI,=I1 1 + Tk ( ) V g 1 - Tk

If we apply (17) to (1.3) with the assumption f(#) =0 on B, then we
obtain Harnack’s inequality

T L S (e

3. Harnack’s theorems. Harnack’s first theorem can be obtained
immediately for the domain D as follows.

THEOREM 2. Let {q&,}p;l be a sequence of real-valued functions, har-
monic on D, which converges uniformly on B. Then the limit function is
harmonic on D.

Proor. From the uniqueness of the Dirichlet problem each func-
tion ¢,(z) harmonic on D can be expressed by means of the Poisson
integral (1.3), that is,

1
80 = = [ $PE 0V,  p=1,2,-
VJse

Let lim, ., ¢,(#) =¢(%) on B. Since ¢, is continuous on B which is
compact, ¢ is also continuous on B. Hence by uniform convergence
of {gb,,} on B and boundedness of P(z, «) for fixed & D and all u& B,

1
lim ¢,(3) = lim — | ¢,(u)P(2, u)dV
VJg

p—o o p— o

1
= 7f8¢(u)P(z, w)dV.
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Therefore, lim, ., ¢,(2) exists for 2ED and is harmonic on D.
Define a subdomain D,, 127>0, of D by D,= {z: I —r—2%3*>0}.

LEMMA. Let z=u[ri]v, where u and v are unitary matrices. Then
2€ED, if and only if 0Sr,<r, k=1,2, - - -, n.

The necessary part of the proof follows from the fact that z/r&D
for & D,. The sufficient part of the proof can be easily seen by noticing
that 2] —zz*=u[rt—ri|u*.

THEOREM 3. If {¢,},z1 is @ monotone nondecreasing sequence of
harmonic functions on D, and if ¢, tends to a finite limit at =0, then
¢, tends to a limit uniformly on D,, 0<r <1, and the limit function is
harmonic on D.

Proor. From the hypothesis that the sequence {d),,} converges at
2=0, Harnack’s inequality and the lemma, it can be proved that
{q&,,} converges uniformly on D, 0<r<1. Secondly, setting ¥,
=¢,—¢1 on D and applying (2.18) to ¥, () and a theorem on inter-
changing [ and lim,.,in [2, p. 582], we obtain

lim f¢p(u)dV = lim ¢,(#)dV.
B

p— oo B p—®

This implies

lim f¢p(u)dV=f lim ¢,(u)dV = | ¢(u)dV.
B B B

p—© P ®

This, together with (2.17), gives

lim Pz, u)p,(u)dV = f P(z, u)p(u)dV.
) 2mdd B B
Therefore, since [pP(z, #)p,(u)dV=¢,(2) and ¢(2) =lim,., P,(2) it
follows that ¢(z) = [sP(z, u)p(u)dV and ¢ is harmonic on D.
REMARKS. (i) By using the left-hand inequality of (2.18) it can be
proved that if ¢,(0) tends to « as p tends to «», then ¢, tends uni-
formly to « on every D,, 1>7>0. Also it is not necessary to restrict
2 to be 0. (ii) It may be shown from the lemma that for any compact
set K CD there exists 7, 1>7>0, such that K CD,.
With these remarks it follows that a general form of Harnack'’s
second theorem on D is

THEOREM 4. Let {¢,},21 be a monotone nondecreasing sequence of
harmonic functions on D. Then there are only two possibilities: either
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¢, tends uniformly to  on every compact subset of D, or ¢, tends to a
harmonic limit function ¢ on D, uniformly on every compact subset of D.
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