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Let X be a Banach space. It is a well-known result that if for every

Banach space YZ)X with dim Y/X=l there is a projection with

norm 1 from Y onto X, then the same holds for every YZ)X without

any restriction on Y/X (see, for example, [3] and the references given

there). In [2] we proved that if for every YZ)X and every e>0 there

is a projection with norm g 1+e from Y onto X then there is also a

projection with norm 1 from every YZ)X onto X.

In view of these results the following questions naturally arise (cf.

also [3, problem 6]):

1. Let ZZ)X be Banach spaces. Suppose that for every Y with

ZZ)YZ)X and dim Y/X=i there is a projection with norm 1 from

Y onto X. Does there exist a projection with norm 1 from Z onto X?

2. Let ZZ)X be Banach spaces. Suppose that for every e>0 there

is a projection with norm =T+e from Z onto X. Does there exist a

projection with norm 1 from Z onto XI

The answer to both questions is negative. This can be shown by

rather simple examples. The purpose of this note is to show that even

if the assumptions of both 1 and 2 hold, there may be no projection

with norm 1 from Z onto X. We shall prove the following.

Theorem. There exist Banach spaces Z~2)X with dim Z/X = 2 satis-

fying:
(i)  There is no projection with norm 1 from Z onto X.

(ii) For every e>0 there is a projection with norm ?£ 1+e from Z

onto X.

(iii) For every Y with ZZ) Y"Z)X and dim Y/X= 1 there is a projec-

tion with norm 1 from Y onto X.

Before constructing the spaces Z and X we introduce some nota-

tions. Let K be the compact metric space of all the ordinals ^u2 in

the order topology.2 Let Km, m = i, 2, ■ ■ -, be the subsets of K de-

fined by

(1) Km = {a; (m — l)w < a Ú mw].

Clearly K— {co2} = IC_1 Km.3 Let N denote the set of positive inte-
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3 {u2} denotes the set consisting of the single point co'. We do not consider 0 here

as an ordinal number.
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gers. Let h(a) be the function on K defined by

(I    if a = mw+2j-l, w = 0, 1, 2, • • • ,/=l, 2, • • • ,
(2) k(a) =   <

I—1    otherwise.

Further let/„, nEN, be a sequence of continuous functions on 2T

defined by

Í-1        if « G JT»„-i, « - 1, 2, • • ■ , «,
(3) /„(a) - {

(.    1        otherwise.

The functions /„ converge (pointwise) as n—» <» to the function /

defined by

Í-1 if « G #2m-l,  w =  1, 2, • • • ,
(4) /(a) =  < .

I    1        otherwise.

We are now ready to define the spaces Z and X. All the spaces will

be over the real field. Let V be the space of all the bounded real-

valued functions on the (abstract) set KXN, with the usual vector

operations and the sup as norm. As X we take the subspace of V con-

sisting of all the functions v satisfying v(a, n)=v(a, 1) for every

aEK and nEN, and v(a, V)EC(K).i The mapping T0 from X onto

C(K) defined by

(5) T0x(a) = x(a, 1),       xE X, aE K,

is clearly an isometry. As Z we take the subspace of V spanned by X

and the functions

(6) zi(a, n) = fn(a),        aEK, nEN, and

(7) z2(a, n) = h(a)/n, aEK, nEN.

Before turning to the proof that (i)-(iii) hold we remark that there

is a projection with norm :§X from Z [resp. from a subspace Y of Z

containing X] onto X if and only if there is an extension of T0 from

Z [resp. Y] onto C(K) with norm ^X. Further, we recall that there

is a biunique correspondence between operators T from a Banach

space U into C(K) and w* continuous mappings F from K to U*.

This correspondence is given by the equation Tu(a) = F(a)u, aEK,

uEU. Moreover, ||r|| =sup« \\F(a)\\ (cf. [l, p. 492]). The function

Fa from K to X* corresponding to the operator To defined in (5) is

given by

* C(K) denotes the Banach space of all the continuous real-valued functions on K

with the sup norm.
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(8) Fo(a)x = x(a, 1) = x(a, n),        x G X, n G N, a G K.

Proof of (i). By the preceding remarks and the Hahn-Banach

Theorem we have to show that there is no function F from K to V*

having the following properties:

(9) F (a) |x = Fo(a)> a G K,

(10) l|f(«)||=l, ccEK,

(11) F(a)zt G C(K), i =1,2.

Suppose there is such an F. By the well-known representation of

V* we may consider each F(a) as a finitely additive measure on

KXN. Let a be an isolated point of K. The characteristic function

X« of the set {a} X N belongs to X and F0(a)xa = 1. Hence by (9) and

(10) F(a) is a positive measure with norm 1 vanishing outside

{a}XN. Since lim,,,«, z(a, n) exists for every z(EZ and a(EK it fol-

lows that for isolated aÇzK there are non-negative numbers a«,,»,

mGÍV, and aa,M satisfying

00

(12) X o„,„ + aa,M = 1, and
n-1

00

(13) F(a)z = 22 0a,nZ(a, ») + aa¡„ lim z(a, w) z (E. Z.
n-l »-»•»

By (7) we obtain that F(a)zi = h(a) Yln-i o,a,n/n. By the definition of

h and by (11) it follows that as a tends to mco (m = l, 2, • • • ),

^aa,n/n tends to 0, and since the aa,n are non-negative we obtain

(14) lim aa,n = 0,       m, m = 1, 2, • • • .
a—Wïù)

For isolated a€X¡„, w = 1, 2, • • -, we obtain by (3), (4), (6), (12)

and (13) that F(a)z1 = l. Hence by (11)

(15) P(co2)zi = 1.

For isolated oiG-K^m+i, m=í, 2, ■ ■ ■ , we obtain similarly that

F{a)zi = 2(a„,i + aa,2 + • ■ • + aa<m) — 1,

and hence by (11) and (14), P((2w + l)co)zi= —1. But this contradicts

(11) and (15).

Proof of (ii). Let Tn be the linear operator from Z to C(K) de-

fined by

s F(a))x denotes the restriction of F(a) to X.



406 JORAM LINDENSTRAUSS

r„(x+Xzi+pz2)=x(a, »)+Xzi(a, n),        xEX, X, ß scalars.

Clearly r„|x=Po for every nEN. We estimate the norm of Tn. There

exists an M < oo suchthat |p| <Ai||x+Xzi+paj|| for every x, X and ß.

Hence

|| Tn(x + Xzi + pz2)|| ^ sup« | x(a, n) + Xzi(a, n) + ßz2(a, n)\ + \n\/n

á (1 +Jf/n)||* + X«i + M«i||.

This proves (ii).

Proof of (iii). If Y is the subspace of Z spanned by X and z2 then

the operator T from Y to C(K) defined by T(x+\z2) = T0(x) is a

norm preserving extension of To. Hence we may assume that Y is the

subspace of Z spanned by X and y = zijrßz2. By reversing the argu-

ment used in the proof of (i) it follows that it is sufficient to show

that for isolated aEK there exist non-negative aa,„, nEN, and aa,m

satisfying (12) such that the function

00 00

g(a) — 53 öa,n/n(a) + ßh(a) 53 aa,„/n + aa,Kf(a)
n=l n— 1

has a continuous extension to the whole of K. We choose the att,n and

aa.x as follows. For aEK2m, m=\, 2, ■ • • and for aEK2m+i with

2m^\ß we take aa,oo = l and a„,„ = 0, nEN. For aEK2m+i with

2m> \ß we takefla,m=l, and aa,n = aa,K = 0,n7¿m if sgnpÂ(a) = — l,6

while if sgn ßh(a) = \ we take aa,m=(2m—\ß\)/(2m+\ß\), aa¡a¡

= 1 —aa,m and a„,B = 0, n^w. With this choice of the aa,„ and aa,x we

have, for isolated a,

— 1 if a E K2m+i with 2m^ |p|,

g(a) =1 if a G Ä2m, m = 1, 2, ■ • • ,

1 —  I ß I /m       if  a G -rv2m+i with 2m> |p |.

This g has, clearly, a continuous extension to K, and this concludes

the proof of assertion (iii).
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•We define sgn i=l if iäO and sgn i= -1 if t<0


