
CONVEX POLYGONS1

ANDREW SOBCZYK

1. Introduction and terminology. In the two-dimensional Eu-

clidean plane E2, if y, ô are any linearly independent vectors, define

projections P, Q by P(xy-\-y8) =xy, Q(xy+y8) —y8. Denote by

L, M the lines consisting respectively of the set of points {ay} for all

real a, and of the set of points {b8} for all real b. A convex region K

in E2 is of standard type, by projections parallel to the directions of y,

8, in case there is a translate C of K, and a choice of vectors y, 8,

such that the projections PC, QC of C coincide respectively with the

sections Lf~\C, MC\C of C with the lines L, M.

For example, any rectangle is of standard type by projections P, Q

parallel to its diagonals; it is also of standard type by projections

parallel to its sides. A triangle is of standard type by projections P, Q

parallel to a side and to any chord joining the opposite vertex to a

point of the side.

By saying that a region C is symmetric, we mean that it can be so

translated in E2 that it is symmetric or centered in the origin 9 of

E2; that is, whenever (x, y)=a = xy-{-y8 is a point of C, so is —a

= ( — x, —y). In dealing with a symmetric region, we always assume

that it is so located in E2 that its center is at 9.

We are now able to state the principal results of this paper. Every

closed symmetric convex polygon C is of standard type, both by projections

parallel to a pair of diagonals of C, and by projections parallel to a pair

of sides of C. Each nonsymmetric closed convex polygon D has an

associated symmetric polygon C, with sides and diagonals parallel to

those of D. Therefore by the results for symmetric polygons, D also

is of standard type, by projections parallel to a pair of sides, and by

projections parallel to a pair of diagonals. By polygonal approxima-

tions, this implies that every bounded planar convex region is of stand-

ard type. In the final section, various functional analytic implications

are derived, and open questions and a conjecture are indicated.

2. Diagonal projections of symmetric convex polygons. For any

symmetric closed convex polygon Cp having 2p sides, denote by

<xi, ■ ■ ■ , ap the angles, measured from a horizontal ray from 9, of the
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sides 1, ■ • • , p in counterclockwise succession, and by j30, • • • , ßP-i,

the angles of the diagonal radii from 0 to the initial points of sides

1, • • • , p. A rectangle is of standard type by projections parallel to

its diagonals; we shall now prove by induction that Cp is of standard

type by projections parallel to a pair of its diagonals.

Let Vi, • • • , Vp denote the vertices (terminal points of sides

1, • • • , p) of Cp. Then vectors to the opposite vertices — V\, • • • ,

— Vp of Cp have respective angles ßi + ir, • ■ ■ , ßp-i±ir, pV If the pair

of sides i, i + l and the opposite pair of sides are replaced by single

sides joining V,-\ to F¿+i and — F,_i to — F,+i, we obtain a sym-

metric convex polygon Cp_i,< which has 2(p — 1) sides. The induction

hypothesis is that every Cp_i if of standard type by projections

parallel to a pair of diagonals of Cp-\.

If the projections by which Cp_i,¿ is of standard type are in direc-

tions ßh, h<i—í, and ft, />t+l, then in consequence of convexity

of Cp, Cp is of standard type by the same projections. In case h = i— 1,

Cp is of standard type by the same projections provided that ft^a»;

and in case j = i+l, Cpis of standard type by the projections provided

that ai+i^ßh-\-ir. Either or both inequalities are satisfied, if they

need to be for the induction, at a vertex Vi such that ai+i^ßi-i+ir

and /3¿+i = «í> where ap+i = ai-|-7r, ßP = ß0+ir, ßp+i = ßi+ir.

In case Cp is such that there is no vertex F< at which both inequali-

ties of the above pair are satisfied, so that we cannot conclude that

Cp is of standard type by the projections for some CP_i,i, then for

each ¿ = 1, • • • , p, we have that either

(1) ßi+i > ai

or

(2) ai+i > ßi-i + ir

or both, are satisfied. For any i, by convexity a,+i>a¿, and p\_i

+ir>ai>ßi. Consider, for example, vertices Fi and V2. In case say

ß2>ai and «3>/3i+t, then also ßi-{-ir>a2>ß2, so in this case Cp is of

standard type by projections in directions p\, ß2.

For any possible Cp as in the preceding paragraph, we may indi-

cate which of the inequalities (1), (2) is satisfied at each vertex

Fi, • ■ ■ , Vp, by a binary symbol having £ digits, such as 121 • • • 1.

Digit 1 indicates that (1) is satisfied, digit 2, that (2) is satisfied.

(If both are satisfied at Vk, the choice between digits 1 and 2 for the

&th place is arbitrary.) If the binary symbol for a Cp contains any-

where a successive pair of digits 12, or if it begins with 2 and ends

with 1, then Cp is similar to the example of the preceding paragraph,
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and therefore is of standard type by projections parallel to a succes-

sive pair of diagonals.

The only remaining cases are those for which the binary symbol

consists of either all l's, or all 2's. We now complete the proof by show-

ing that these cases for CP are impossible. The case of all 2's becomes

the case of all l's if the numeration and positive sense of angles are

changed from counterclockwise to clockwise (or if the plane of CP is in-

verted), so it is sufficient to dispose of the case of all l's. We therefore

assume that /3,+i>af, i=l, ■ ■ ■ , p. By convexity, there is a vertex

Vk such that a line at angle j30 through Vk is a support line of Cp. By

affine transformation, we may suppose that the difference ßk—ßo is

7t/2, and that |3o = 0. In case Kk^p —1, ii Vi is the vertical projec-

tion of side 1, we have dn<»i cot p\, where ¿0 is the length of the

horizontal diagonal chord. If dk is the length of the vertical diagonal

chord, by hypothesis we have dk>vi, and d0>dk cot(ap — w). But

since ßp+i = ßi-\-7T>ap, we have cot ßi < cot (c*p —it), d0>Vi cot(ap — Tr)

>Vi cot jSi, which contradicts d0<vi cot ft. If k—l and p>3, then

a2^ir, ßz>a2, but since (30 = 0, we have j33<tt, which is a contradic-

tion. If k = 1 and p = 3, then by hypothesis a2^T, and also j83 = |3o+ir

= 7r>o!2, which again is a contradiction. Therefore the case of all l's

is impossible, and it has been demonstrated fully that every Cp is of

standard type by projections parallel to some pair of its diagonals.

3. Duality of projections parallel to sides and diagonals. Points

and lines in E2 are related to lines and points in the dual plane E2* of

E2 by means of the basic equation

(3) x% + yr, - 1 = 0.

A point (x, y) of E2 is dual to the line of points whose coordinates

(£, rj) in E2* satisfy equation (3) ; the line of E2 given by (3) for

fixed (£, 77) is dual to the point (£, r¡) in E2'. As usual the finite planes

E2, E2* may be enlarged to be projective planes by adjunction of ideal

points at infinity. Then 9 is dual to the line at infinity of E2*; each line

x cos co+y sin w = 0 through 9 in E2 is dual to the point at infinity in

the direction co of E2:

The dual points Ui, ■ ■ ■ , Up, and — Ui, • • • , — Up, of the sides

1, ■ ■ ■ , p, and of the parallel opposite sides, are vertices of the dual

polygon Cp* of Cp. It is easily shown that Cp* is symmetric and con-

vex. If Cp is of standard type by projections parallel to its diagonals

at angles ßh, ßjt denote by Bu, B¡ the lines containing the correspond-

ing diagonals, and by B¿, Bj the parallel lines respectively through

vertices V¡, Vk- The dual point B'h* is a point of side UjUj+x of Cp*;
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since Bh passes through 0, the dual point 23^* is a point at infinity.

Since Bh and sides h, h-\-\ are copunctal, the points Bh*, Uh, Uh+i

are collinear; that is, the line through B'h' in the direction of 23a*

is parallel to side Uh Uh+i- Similarly the line through the point 23;'* on

side UhUh+i in the direction of the point at infinity 23 y* is parallel to

side UjUj+i. Therefore Cp* is of standard type by projections parallel

to sides Uh Uh+i and Uj Uj+i.

Any closed symmetric convex polygon may be taken as a Cp*; then

since Cp**=Cp is of standard type by projections parallel to a pair

of diagonals, Cp* is of standard type by projections parallel to a pair

of sides. Direct proof that every Cp is of standard type by projections

parallel to a pair of sides seems to be more difficult; or at least the

author, after some effort, abandoned his attempt to find a direct

proof, and succeeded in finding the preceding proof by appeal to

duality.

4. Nonsymmetric convex polygons. If D is any closed convex poly-

gon having n sides, a direction of angular reference may be chosen

so that if o;i, • • -, an are the angles of the sides of D, then 0<«i< • • •

<an<2ir, where the sides are taken in counterclockwise succession.

Let Ait • • • , An be vectors for the sides of D, in corresponding

counterclockwise directions around D. A diameter of D is a chord

which joins the points of contact of parallel support lines of D.

We may associate with D a symmetric convex polygon C as fol-

lows: C=D — D is the set of all vectors of the form (A— F), where

XED, YED, with respect to an arbitrary origin 0. (P. C. Hammer

has named the symmetric convex body C so associated with any

convex body D the symmetroid of D ; the concept also occurs in work

of V. L. Klee.2)

It may be easily shown that the vectors for the sides of C are

+ Ai, • • • , +An, where the angle of — Ak is (ak — ir) if ak^ir,

(ak-\-ir) if ak<ir, and the sides ±Ai, • • • , ±An are arranged in order

of increasing angles of the vectors. Diagonals of D which are diam-

eters correspond to diagonal chords of C; diameters from a vertex to

a side of D correspond to diametral chords between a pair of parallel

sides of C. Therefore obviously since C is of standard type by projec-

2 It also appears earlier in work of O. B. Ader [l, p. 297], and implicitly in the

treatise of Bonnesen and Fenchel [2]. The "support-function" if({, rj) for a convex

region D is defined by the equation for the support-line in any direction (£, i;), x£-\-yn

—H(%, r¡) = 0. The function H(£, 77) is the "gauge-function" for the dual region D*. The

associated symmetric convex region C is defined by Bonnesen and Fenchel to be the

region which has the "support-function" íf({, 7¡)+íf(— {, —q)\ it may be easily veri-

fied that C=D-D.
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tions parallel to a pair of (nonparallel) sides, D is of standard type by

projections parallel to the corresponding sides of D; similarly D is of

standard type by projections parallel to some pair of diametral di-

agonals of D.

Let a side Ak of D such that (ak+i — ak-i) ^ir, if any, be called an

obtuse side. Then clearly if D has an obtuse side, it is like a triangle,

and is of standard type by projections parallel to the side and to

any ray at an angle ß such that ak^i^ßSak+i — ir. All sides of a tri-

angle are obtuse; any convex skew quadrilateral must have an obtuse

side; a convex pentagon may have all sides nonobtuse. Since a convex

polygon D having no obtuse side is of standard type by projections

parallel to a pair of interior diagonals, for such a D there always

exists a diametral diagonal which is an obtuse side for two polygons

into which D is divided by the diagonal; the two polygons are simul-

taneously of standard type by projections parallel to the diagonal and

to the segments into which the other diagonal is divided.

For any vertex F< of a convex polygon D, consider particular

chords from F¿ as follows. In case D has an odd number of sides, the

chords (from F, to an interior point of a side of D) are those which

divide D into two polygons with the same number of sides. In case D

has an even number of sides, the chord is the diagonal (from F¿ to

another vertex of D) which divides D into two polygons with the

same number of sides. Iff such a chord is a diameter of D, then the

two polygons into which D is divided are each of standard type by

projections parallel to the chord and to the support lines of the end

points of the chord (although D itself need not be of standard type by

those projections). Call a vertex Vi, such that the particular chords

or chord as described are diameters of D, a regular vertex. Iff F,- is

regular, the triangle whose sides are extensions of the sides of D

adjacent to Vit and whose base is in the support line at the other end

of the diameter from Vi, circumscribes D.

Theorem. Every convex polygon D has at least one regular vertex.

Proof. Suppose first that the number n of sides of D is odd. By

definition, íorj>k, V¡ is regular in case (ay—a,--*) <ir, and («y+i—a¡-k)

> iv, where an+i = (en + 27r). For j :£ k, V¡ is regular in case

ai~(ai+k+\ — 2ir) <tt, and ay+i— (aj+k+i— 2ir)>7r. Thus assuming that

every vertex is not regular, we have

(4) (ay — ay_i) ^ ir,    or    (ay+i - ay_t) ^ it,

for j>k, and
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(5) («/+*+1 — <*y) ̂  ir,    or    (ay+t+i — ay+i) ^ ir,

for j^k. For each /, by convexity and since D has n sides, not both

inequalities in (4) or in (5) can be satisfied. Assume that the first

member of (4) is true ior j = k + l; the second member, which is the

same as the first member of (5) for j—1, then is false. The second

member of (5) for j= 1, which is the same as the first member of (4)

for j = k + 2, then is true. The second member of (4) for/ = k+2, which

is the same as the first member of (5) for/ = 2, then is false. Con-

tinuing in this way, we see that on the basis of the assumption that

the first member of (4) is true, all the first members of (5) are false,

and all the first members of (4) are true. In particular for j=2k-\-l

= n, (an— an-k) ^7r, and so the second member of (4), namely a„+i

— ttk+xúv, is false; that is (a\-\-2Tr)—ak+i>ir, or ak+\ — a\<ir. But

this contradicts the assumption that the first member of (4) for

j = /e + 1, namely aji+i — a;i^7r, is true. Similarly if we assume that the

first member of (4) for j = £ + l is false, from the second member of

(4) for j = » and the intervening inequalities, we obtain a contradic-

tion. Therefore, we have now established that D must always have

at least one regular vertex.

For the case of even n, n = 2k, a vertex V¡ is regular iff (a,- —a,-_t) isl-

and (o!y+i — ay-*) >ir; that is, in case there is a triangle T circumscrib-

ing D, such that V¡ and extended sides j, / + 1 are a vertex and

adjacent sides of T, and the opposite vertex F,-_* is on the third side

of T. Consideration of the similar system of alternative inequalities

to (4) and (5) yields the conclusion that D has at least one regular

vertex.

Remarks. In case no side of D is parallel to a diametral diagonal,

then D is of standard type only by projections parallel to sides, or by

projections parallel to diagonals. If Bh, B¡ are the diagonals such that

D is of standard type by projections parallel to Bh, B¡, and if the

origin 0 in E2 is chosen at the point of intersection of 23fc and 23y, then

the dual polygon D* is a convex polygon which has two pairs of

parallel sides, and D* is of standard type by projections parallel to

the directions of the pairs of parallel sides. Any convex polygon,

which has two pairs of parallel sides, is of standard type by projec-

tions parallel to the two directions of the pairs of parallel sides, if and

only if there is a diameter parallel to each of the two direc-

tions, which joins points of the parallel sides in the other direction.

This is a dual condition for D to be of standard type by projections

parallel to a particular pair of diametral diagonals.



444 ANDREW SOBCZYK [June

5. Functional analytic interpretations and equivalent properties.

Any bounded symmetric convex region C in E2 may be taken as the

unit cell for a Minkowski or Banach norm on E2. It follows from the

result of §2 that basis vectors y, 8 may always be chosen so that this

norm simultaneously has the properties ||(x+Ax)y-|-yô|| g:||xy+y5||

when x, Ax have the same sign, ||x7 + (y+Ay)ô|| 2:||x7+y5|| wheny, Ay

have the same sign, and ||xy+yS|| S:max(||x7||, ||yôj|). Another

equivalent property is that C is intermediate between the convex hull

and the Cartesian product of the intervals LC\C, MC\C. (The norm

||x7+yo||i = ||x7¡| + ||y8|| has the convex hull for its unit cell.)

Still another equivalent statement is the following: if y, 8 are vari-

able vectors of unit norm, and er, t are unit tangent or support vectors

to the unit cell C at the end points of y, 8, in directions such that the

couples of vectors (7, <r) and (8, t) have opposite senses, then there

always exist 7, 8 such that T — y and a =8. (The author was unable to

establish this directly by application of the Brouwer or other fixed

point theorem.) Since a support line exists at the end point of every

7, we may take 8 = a, and assert that a 7 always exists such that r = 7.

It is a theorem of Banach and Mazur [3, pp. 185-187], that every

separable Banach space is isometric with a subspace of the space (C)

of continuous functions z(t) on a finite closed interval, where the

norm in (C) is given by ||z|| =max( \z(t)\. In particular, the norm for

any two-dimensional Banach space L2 is given by ||x7-f-yS||

= maxí|x7(¿)+y5(í)|, where y(t) and 8(t) are any pair of continuous

functions which span the subspace M2 of (C) which is isometric with

L2.

In case of a Banach space L2 such that the unit cell is a symmetric

convex polygon C of 2p sides, the functions 7, 5 may be functions

on a discrete set of p or 2p elements. If we change the independent

variable from ¿ to w = arctan 8/y, if xf,+yT/¿— 1 =0, i=í, ■ ■ ■ , 2p,

are the equations of the sides of C, then we may set y(ui)=%i,

8(ui)=t]i, where «< = arctan */,•/£,•, and 7, 8 may be extended to be

continuous functions on the entire interval 0^u<2tt by interpolat-

ing, for each i, the continuous graph between w< and m,+i which cor-

responds to the line segment joining the points (£,-, 17.) and (£»+i, t/.+i)

in the dual plane (the points of this line segment are dual to all the

support lines through vertex F< in the original plane).

For any unit cell C, we may approximate C by a sequence {C„}

of circumscribing symmetric convex polygons, with the number of

sides of C„ increasing indefinitely with n. Further, we may choose the

circumscribing polygons so that from a certain stage on they are all

of standard type by projections parallel to a pair of sides which main-

tain constant directions in the succession of circumscribing polygons.
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Thus if yn(u), 8n(u) are the extended functions corresponding to one

of the polygons Cn, if Cn is of standard type by projections parallel to

sides h, k, then we have ma.xu\xy„(u)-)-y8n(u) | = \xyn(uh)-\-y8n(uh) \

= \xyn(uh)\ for sufficiently small y, so 8n(uh)=0, and similarly

7n(w*)=0. Therefore the functions y(u), 8(u) which represent C have

the property that 8(u{) =0 at a value u — u\, where y(u) is maximum,

and simultaneously 7(w2)=0 at a value w = «2 where 5(m) is maximum.

This, and similar considerations for any bounded convex D in E2

with 0 interior to D, yield the following theorem.

Theorem. If a(u), ß(u) are any pair of linearly independent con-

tinuous functions, periodic with period 2ir, then there exist linear com-

binations y(u) =aa(u)-\-bß(u), 8(u) = ca(u)-\-dß(u), such that simul-

taneously 8(ui)=0 at a value u = ux where y(u) is maximum, and

y(u2) =0 at a value u = u2 where 8(u) is maximum. If in particular a, ß

are continuously differentiable, then there always exist distinct values

Mi, u2 such that simultaneously a'(ui)ß(u2) =a(u2)ß'(ui) and a'(u2)ß(u\)

= a(ui)ß'(u2).

This theorem follows since any polygon Dn is of standard type by

projections parallel to a pair of sides, and since the function on £2

defined by p(x, y)=ma.xu(xa(u) -\-yß(u)), for any pair of independent

continuous functions a, ß, is positive homogeneous and subadditive,

which implies that D= {(x, y): p(x, y) á 1} is convex and has 0 in its

interior. The function defined by ||(x, y)||=maxu \xa(u)-\-yß(u)\,

where a, ß are such that a(u-\-ir) = — a(u), ß(u-\-ir)=—ß(u), is a

norm.

A convex region A in w-dimensional Euclidean space Em is of

standard type if there exist a translate D of A, and a choice of basis

7i- • • • . 7m, such that PjD = LjHiD, where Py(xi7i + • • • +xm7m)

= Xy7y, and Ay is the line of points {c7y} for all real c. The author

ventures the following conjecture.

Conjecture. Every bounded convex region D in Em is of standard

type.

A form of the conjecture, which is weaker for nonsymmetric convex

regions, would allow the ranges of the projections and lines Ay to be

translates of the lines {C7y}. By the existence of the associated sym-

metric convex region, as indicated in §4, to establish the truth of at

least the weaker form of this conjecture, it would be sufficient to

prove it for bounded symmetric convex regions C in Em. One method

of attempting to prove it might be to apply the above theorem in

some way to a set of m linearly independent continuous functions

ai(u), • ■ ■ , am(u), having the property a¡(u + ir) = — a¡(u),

/=1, • • • , m, which corresponds to symmetry of C. The unit cell
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for the norm ||(xi, • • • , xro)|| =maxu|xi7i(w)+ • • • +xm7m(tt)| is of

standard type if there exist distinct values «i, • • • , um, such that

7y(«) is maximum at u — u¡, and 7¿(wy)=0, ij^j, for j—í, ■ • ■ , m.

An unsolved problem concerning separable Banach spaces M is to

show whether or not every such space has a base, that is, a set of ele-

ments {7;} of M such that each element X of M has a unique expan-

sion X= / wli x.-r.-, which converges in norm to X. (See [3, pp. 110-

111, and p. 238].) In case M has a base, the projections P,x = xy7y,

although uniformly bounded, may have bounds greater than or equal

to 2. If the unit cell C for a separable Banach space M is of standard

type, then M has a base }7y) with the stronger property that the

projections Py are all of norm 1.
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ON UNIFORM CONNECTEDNESS

S. G. MRÓWKA AND W. J. PERVIN1

Connectedness of topological spaces can be defined in terms of

continuous functions to a discrete space (every continuous function

to a discrete space is constant) or to the space of real numbers

(every continuous real function has the Darboux property; i.e., the

range of the function is an interval). We will consider in this paper

similar properties for uniform and proximity spaces obtained by re-

placing continuous functions by uniformly continuous or equicon-

tinuous functions (a function is equicontinuous iff it takes near sets

into near sets).

Definition 1. A uniform space (X, U) is uniformly connected iff

every uniformly continuous function on X to a discrete space is con-

stant.
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