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for the norm ||(xi, • • • , xro)|| =maxu|xi7i(w)+ • • • +xm7m(tt)| is of

standard type if there exist distinct values «i, • • • , um, such that

7y(«) is maximum at u — u¡, and 7¿(wy)=0, ij^j, for j—í, ■ • ■ , m.

An unsolved problem concerning separable Banach spaces M is to

show whether or not every such space has a base, that is, a set of ele-

ments {7;} of M such that each element X of M has a unique expan-

sion X= / wli x.-r.-, which converges in norm to X. (See [3, pp. 110-

111, and p. 238].) In case M has a base, the projections P,x = xy7y,

although uniformly bounded, may have bounds greater than or equal

to 2. If the unit cell C for a separable Banach space M is of standard

type, then M has a base }7y) with the stronger property that the

projections P¡ are all of norm 1.
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ON UNIFORM CONNECTEDNESS

S. G. MRÓWKA AND W. J. PERVIN1

Connectedness of topological spaces can be defined in terms of

continuous functions to a discrete space (every continuous function

to a discrete space is constant) or to the space of real numbers

(every continuous real function has the Darboux property; i.e., the

range of the function is an interval). We will consider in this paper

similar properties for uniform and proximity spaces obtained by re-

placing continuous functions by uniformly continuous or equicon-

tinuous functions (a function is equicontinuous iff it takes near sets

into near sets).

Definition 1. A uniform space (X, U) is uniformly connected iff

every uniformly continuous function on X to a discrete space is con-

stant.
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Definition 2. A proximity space (A, 8) is equiconnected iff every

equicontinuous function on A to a discrete space is constant.

A uniform (proximity) space is discrete iff its topology is discrete.

In the above two definitions the discrete space may be assumed,

without changing the sense of the definitions, to be the two-point

discrete space D = {0, 1}.

Theorem 1. Let (X, U) be a uniform space and 8 be the induced

proximity relation. The following conditions are equivalent:

(1) X is equiconnected;

(2) every real-valued equicontinuous function on X has a range whose

closure is an interval;

(3) for every A EX, 0 ^A ^ A, A is close to X — A ;

(4) the Smirnov compactification X* of X is connected;

(5) X is uniformly connected;

(6) every real-valued uniformly continuous function on X has a range

whose closure is an interval;

(7) X is chain connected; i.e., for every p, qEX and every Î7GU,

(p, q)E Un for some n. (The equivalence of (5) and (7) was stated, with-

out proof, by Lubkin [2].)

Proof. The pattern of the proof will be (1)=>(2)=>(6)=K5)=K7)
=K3)=K4)=K1).

[(1)=>(2)]. Let/ be a real-valued equicontinuous function on X

and suppose that C1(/[A]) is not an interval. Then there is an inter-

val (a, b) such that (a, b) C\f[X] = 0, while (- °°, a] C\f[X] y^0 and
[b, + °°) r\f[X]?¿0. Setting 000= 0 for t^a and <p(t) = l lor t^b
we see that 4> is an equicontinuous function on the set (—°°, a]

yj[b, + °° ) into the discrete space D, hence <p o f is also equicontinu-

ous, but it is not constant.

[(2)=>(6)]. This is obvious since every uniformly continuous func-

tion is equicontinuous.

[(6)=>(5)]. This follows from the fact that a uniformly continuous

function f to D may be considered as a real-valued uniformly con-

tinuous function and the closure of its range will not be an interval

unless / is constant.

[(5)=K7)]. Suppose there is a pair p, q of points in X and a set

UEVL such that (p, q)EUn for no ». Define/(x) =0 if (p, x)EUn for

some n and/(x) = 1 otherwise. Then/ is a uniformly continuous func-

tion on X into D (indeed, if (x, y)E U, then/(x) =f(y)), but/ is not

constant.

[(7) =»(3) ]. Let A CX, 0 ¿¿A ̂ X, and let U be an arbitrary mem-

ber of U. Take poEA, q0EX — A, then (po, qo)E U" for some n. Hence
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there is a chain p0, pi, • • • , pn = qa of points in X such that (pi-i, pi)

G U for i= 1, 2, ■ • ■ , n. Denote by pk the first of the points pi that

belongs to X — A. Hence pk-i E A and (pk-i, pk) belongs to

UC\ [Ax(X — A)\ which is then nonempty. Since U was an arbitrary

member of U, A is close to X — A.

[(3)=>(4) ]. If X* is not connected, then it is the union of two non-

empty, disjoint sets A and B which are both open and closed in X*.

Since they are both closed and open and X is dense in X*,

A=C\(AC\X) and B = C\(BC\X) (closures being taken in X*).

Therefore AC\X is not close to B(~\X = X-(Ar\X) although AC\X

is a nonempty proper subset of X.

[(4)=>(1)]. Let/ be an equicontinuous function on X to D. Con-

sidering / as a real-valued function, it may be extended to a real-

valued continuous function /* on X*. Since D is closed in the reals,

/* maps X* into D. X* being connected implies that /* must be

constant and hence / is constant.

It therefore follows from the above theorem that uniform con-

nectedness is equivalent to equiconnectedness. Neither of these forms

of connectedness is equivalent to (topological) connectedness, as the

example of the rational numbers (with the usual uniformity or with

the usual proximity) shows. However, connectedness does imply uni-

form connectedness since every uniformly continuous function is con-

tinuous. Furthermore, if a space is uniformly connected (or equi-

connected) in every uniformity (or proximity) which is compatible

with the topology, then the space is connected. This follows from

the fact that X is connected whenever ßX is connected and part (4) of

the above theorem applies.

In connection with parts (2) and (6), we note that one cannot re-

place the condition given on the range of / by the requirement that

the range of / be an interval as the example of the rationals with

f(x) —x shows. It is natural to ask what would happen if one would

require that all equicontinuous functions on a proximity space have

the Darboux property. The answer is rather unexpected.

Theorem 2. Let (X, 8) be a Lindelbf proximity space. If every real-

valued equicontinuous function on X has the Darboux property, then X

is connected (in the topological sense).

Proof. Suppose X is not connected and \et X = A\B be & separa-

tion of X. Let us denote by X* the Smirnov compactification of X

associated with the proximity 5 and let us set Z=AC\B where the

closures are taken in X*. By a theorem of Smirnov [3], there exists a

real-valued continuous function / on X* such that f(p) =0 for p in
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Z but f(p) > 0 for p in X. Let us define a real-valued function g on

X* by setting g(p) =f(p) for pEÄ and g(p) = -/(p) for p G 23. Clearly
the range of g | A is not an interval since g \ X is never 0 but does take

on positive and negative values. Since / is continuous on A, —f is

continuous on B, and / and —/ agree (both vanish) on AC\B, g is

continuous on A*. Hence the restriction g\ X of g to A is equicon-

tinuous.

Example. The hypothesis of the Lindelöf property is essential in

the above theorem as the following example shows. Let X be the dis-

crete union of two copies of the "long line" (see [l, p. 55]) with the

proximity induced by the one-point compactification. The space X is

not connected since the two "long lines" form an obvious separation.

On the other hand, the range of every equicontinuous function on X

must be an interval. This follows from the fact that every continuous

real-valued function on the "long line" is eventually constant. Using

the one-point compactification, we see that the two constants ob-

tained from the two copies of the "long line" must be the same. The

initial segments of these copies are connected and hence their images

are intervals and so the total image of A must be an interval.
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