UNIQUENESS OF THE OPEN CONE NEIGHBORHOOD

KYUNG WHAN KWUN1

1. Introduction. The space $A \times [0, \infty)$ with $A \times 0$ identified to a point v is called the open cone OC(A) over A and the point v is called the vertex of the cone.

Let X be a space. A point $x \in X$ is said to have an open cone neighborhood U if there is a homeomorphism f of some OC(A) onto the open set U of X with f(v) = x. Our first theorem is the following.

Theorem 1. Let U and V be any two open cone neighborhoods of a point x in a locally compact Hausdorff space X. Then there is a homeomorphism of V onto U which leaves a neighborhood of x pointwise fixed.

As immediate corollaries, we obtain a result of Mazur and Rosen that the open star of a vertex of a triangulated manifold is an open cell and also a result of Kwun and Raymond that the open star of a vertex on the boundary of a triangulated manifold with boundary is a cell minus a boundary point.

Theorem 1 was discovered when we tried to prove the following:

THEOREM 2. Let M be a compact manifold with boundary. If M' is a compact manifold with boundary such that Int M = Int M' then Bd $M \times E^1 = \text{Bd } M' \times E^1$. Conversely, if B is a compact manifold such that Bd $M \times E^1 = B \times E^1$ then there exists a compact manifold M' with boundary such that Int M' = Int M and Bd M' = B.

Unfortunately, we do not know if Bd $M \times E^1 = \text{Bd } M' \times E^1$ does not imply Bd M = Bd M'.

Finally the method of the proof of Theorem 1 may be used to prove more general theorems. For example,

THEOREM 3. With x and X as in Theorem 1, if $U^1 \subset U^2 \subset \cdots$ is a sequence of open cone neighborhoods of x then $U = \bigcup U^i$ is also an open cone neighborhood of x homeomorphic to each U^i .

This generalizes [1].

2. Proof of Theorem 1. Let $f: OC(A) \rightarrow X$ and $g: OC(B) \rightarrow X$, be homeomorphisms defining U and V respectively as open cone neighborhoods of x. Local compactness of X implies compactness of A and

Presented to the Society, November 17, 1962; received by the editors October 16, 1962.

¹ Supported in part by NSF GP-626.

- B. Hence we may assume that X = U = OC(A) and f is the identity. We express each point of OC(A) by (a, t), $a \in A$, $t \ge 0$ with the understanding that $A \times 0$ is identified to x. The set $A \times t$ is abbreviated to A_t . We do similarly for OC(B) and denote by U_t and V_t respectively the compact sets $\bigcup_{t' \le t} A_{t'}$ and $\bigcup_{t' \le t} g(B_{t'})$. Observe that if t > 0, there exist t', t'' > 0 such that $V_{t'} \subset U_t$ and $U_{t'} \subset V_t$.
- 1. We find five positive numbers p < q < r, s < t such that $g(B_s)$ separates A_p from A_q and $g(B_t)$ separates A_q from A_r . This is done by a repeated use of the above observation.
- 2. There exists a homeomorphism h_0 of $A \times [p, q]$ onto $A \times [q, r]$ such that

$$h_0(a, p) = (a, q),$$

 $h_0(a, q) = (a, r),$
 $h_0g(b, s) = g(b, t).$

In particular, there is a homeomorphism F of $B \times [1,2]$ into $A \times [p, r]$ such that

$$F(b, 1) = g(b, s)$$
 and $F(b, 2) = h_0 g(b, s)$.

This can be easily seen as follows. Let U_s' and V_s' denote the sets $\bigcup_{s'\geq s} A_{s'}$ and $\operatorname{Cl}(U-V_s)$. We denote by ϵ a sufficiently small positive number. There exists a homeomorphism k_1 of U onto itself such that $k_1 \mid U_{q-\epsilon} \cup U'_{r+\epsilon} = 1$ and $k_1(a,q) = (a,r)$. There exists a homeomorphism k_2 of U onto itself such that $k_2 \mid V_{s-\epsilon} \cup V'_{t+\epsilon} = 1$ and $k_2g(b,s) = g(b,t)$. There exists a homeomorphism k_3 of U onto itself such that $k_3 \mid U_{p-\epsilon} \cup U'_{q+\epsilon} = 1$ and $k_3(a,p) = (a,q)$. Let k_0 be the appropriate restriction of $k_3k_2k_1$.

3. Choose positive numbers u_i , w_i such that

$$q = u_0 < r = u_1 < u_2 < \cdots,$$

 $s = w_0 < w_1 < w_2 < \cdots$

and

$$\lim u_i = \lim w_i = + \infty.$$

- 4. Let H_0 be the identity map of V_{w_0} . This can be extended to a homeomorphism H_1 of V_{w_1} onto $U_{u_0} \cup g(B \times [s, t])$.
- 5. Find a homeomorphism h_1 of $A \times [p, u_1]$ onto $A \times [q, u_2]$ which is an extension of h_0 such that $h_1(a, u_1) = (a, u_2)$.

Let H_2 be an extension of H_1 which maps V_{w_2} homeomorphically onto $U_{u_1} \cup h_1 g(B \times [s, t])$. (H_2 can be chosen so that $H_2(g(b, w_2)) = h_1 g(b, t)$, but this is not necessary.)

6. Find a homeomorphism h_2 of $A \times [u_0, u_2]$ onto $A \times [u_1, u_3]$ which is an extension of $h_1 \mid A \times [u_0, u_1]$ such that $h_2(a, u_2) = (a, u_3)$.

Let H_3 be an extension of H_2 which maps V_{w_3} homeomorphically onto $U_{u_2} \cup h_2 h_1 g(B \times [s, t])$.

7. Similarly, find H_4 , H_5 , \cdots which define a homeomorphism of V onto U which leaves V_{u_0} pointwise fixed.

3. Proof of Theorem 2.

The first part. Let M^* and M'^* be obtained from M and M' by shrinking Bd M and Bd M' to points p and p' respectively. By [2], p and p' have open cone neighborhoods homeomorphic to $OC(Bd\ M)$ and $OC(Bd\ M')$. Since M^* and M'^* are one-point compactifications of homeomorphic spaces Int M and Int M', there is a homeomorphism of M^* onto M'^* under which p is mapped into p'. By Theorem 1, $OC(Bd\ M) = OC(Bd\ M')$ with the vertices corresponding to each other. After deleting the vertices, Bd $M \times E^1 = Bd\ M' \times E^1$.

The second part. It follows that $OC(\operatorname{Bd} M) = OC(B)$ with the vertices of the cones corresponding. Hence, an examination of a set like $V_s \cap U_p'$, where V_s and U_p' are the sets defined in the proof of Theorem 1 and s, p are positive numbers as in 2 of the proof of Theorem 1, reveals the existence of a compact manifold Y with boundary such that $\operatorname{Bd} Y$ is the disjoint union of B and Bd M and Y-B=Bd $M \times [0, 1)$ with $y \in \operatorname{Bd} M$ corresponding to $y \times 0$ and Y-Bd M=B $\times [0, 1)$ with the points of B similarly corresponding.

We let $M' = M \cup Y$ with $M \cap Y = Bd$ M. Then clearly, M' is a compact manifold with boundary B. That Int M' is homeomorphic to Int M follows from [2].

4. Proof of Theorem 3. Let $f^i : OC(A^i) \to X$ be homeomorphisms defining U^i as open cone neighborhoods of x. As in the proof of Theorem 1, A^i_t denotes the subset $\{(a^i, t) | a^i \in A^i\}$ of $OC(A^i)$ and $U^i_t = \bigcup_{t \leq t} f^i(A^i_{t'})$.

We can find, one by one, positive numbers t_{ij} , $i, j = 1, 2, \cdots$ such that

(1)
$$\bigcup_{i} U_{t_{ij}}^{i} = U^{i} \qquad \text{for each } i,$$

(2)
$$U_{t_{ij}}^{i} \subset U_{t_{i+1,j}}^{i+1} - f^{i+1}(A_{t_{i+1,j}}^{i+1})$$

for each i and j, and

(3)
$$U_{t_{ij}}^{i} \subset U_{t_{i,j+1}}^{i} - f^{i}(A_{t_{i,j+1}}^{i}).$$

In what follows, $U_{i,j}^i$, etc. will be denoted simply by U(i,j), etc.

Clearly for any sequence $j_1 < j_2 < \cdots$ of positive integers j_i , $\bigcup U(i, j_i) = U$.

We will repeatedly use the method of the proof of Theorem 1.

Choose j_1 . Let H_1 be the identity map of $U(1, j_1)$. Choose $j_2 > j_1$. As in 2 and 5 of the proof of Theorem 1, we extend H_1 to a homeomorphism H_2 of $U(1, j_2)$ onto a compact set F_2 containing $U(2, j_2)$ and contained in U^2 . The next step reveals the general step. Since $H_2(f^1(A(1, j_2)))$ has a product neighborhood in U^2 , we extend H_2 to a homeomorphism H'_2 of U^1 into U^2 . Consider the open cone neighborhood V^1 defined by H'_2f^1 : $OC(A^1) \rightarrow X$. We find an integer $j_3 > j_2$ so that $U(3, j_3 - 1)$ contains F_2 . We extend the homeomorphism H_2 : $V(1, j_2) \rightarrow F_2$ to a homeomorphism H'_3 of $V(1, j_3)$ onto a compact set F_3 containing $U(3, j_3)$ and contained in U^3 . Using H'_3 , we define a homeomorphism H_3 , an extension of H_2 , of $U(1, j_3)$ onto F_3 . In exactly the same manner, we find H_3 , H_4 , \cdots and they together generate a homeomorphism, leaving $U(1, j_1)$ pointwise fixed, of U' onto $\bigcup_i F_i = U$.

5. Remarks. As we mentioned earlier, we do not know of any compact nonhomeomorphic manifolds B and B' such that $B \times E^1 = B' \times E^1$. Although the nonexistence, if proved, would strengthen Theorem 2, one might feel that such B and B' exist. One possibility is that $L(7, 1) \times S^n \neq L(7, 2) \times S^n$ for some n. Since $L(7, 1) \times E^n = L(7, 2) \times E^n$ for n > 2 by [3], $\operatorname{Int}(L(7, 1) \times I^n) = \operatorname{Int}(L(7, 2) \times I^n)$ for n > 2. Hence, by Theorem 2, $L(7, 1) \times S^{n-1} \times E^1 = L(7, 2) \times S^{n-1} \times E^1$. But the remaining question is whether $L(7, i) \times S^{n-1}$ are homeomorphic.

Also in Theorem 3, we need not assume U to be the monotone union. It suffices to assume that U_t^i , $i=1, 2, \dots, t>0$, form a cofinal family in the collection of the compact subsets of U. Hence the proof of Theorem 3 implies a result due to Stallings [4].

Finally, we wish to thank J. Andrews for a stimulating conversation we had with him which incidentally was the start of the present work.

References

- 1. Morton Brown, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814.
- 2. ——, Locally flat embeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341.
- 3. John Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. (2) 74 (1961), 575-590.
- 4. John Stallings, Groups with infinite products, Bull. Amer. Math. Soc. 68 (1962), 388-389.

FLORIDA STATE UNIVERSITY