UNIQUENESS OF THE OPEN CONE NEIGHBORHOOD
KYUNG WHAN KWUN!

1. Introduction. The space A X [0, «) with 4 X0 identified to a
point v is called the open cone OC(4) over A and the point v is called
the vertex of the cone.

Let X be a space. A point xE€X is said to have an open cone neigh-
borhood U if there is a homeomorphism f of some OC(4) onto the
open set U of X with f(v) =x. Our first theorem is the following.

THEOREM 1. Let U and V be any two open cone neighborhoods of a
point x in a locally compact Hausdorff space X. Then there is a homeo-
morphism of V onto U which leaves a neighborhood of x pointwise fixed.

As immediate corollaries, we obtain a result of Mazur and Rosen
that the open star of a vertex of a triangulated manifold is an open
cell and also a result of Kwun and Raymond that the open star of a
vertex on the boundary of a triangulated manifold with boundary is
a cell minus a boundary point.

Theorem 1 was discovered when we tried to prove the following:

THEOREM 2. Let M be a compact manifold with boundary. If M’ is a
compact manifold with boundary such that Int M =1Int M’ then Bd M
X E'=Bd M’'XE! Conversely, if B is a compact manifold such that
Bd M XE'=BXE?! then there exists a compact manifold M’ with
boundary such that Int M’'=1Int M and Bd M'=B.

Unfortunately, we do not know if Bd M X E'=Bd M’ X E! does not
imply Bd M=Bd M'.

Finally the method of the proof of Theorem 1 may be used to prove
more general theorems. For example,

THEOREM 3. With x and X as in Theorem 1, if U'CUC - -+ isa
sequence of open cone neighborhoods of x then U=UU’ is also an open
cone neighborhood of x homeomorphic to each U:.

This generalizes [1].

2. Proof of Theorem 1. Let f: OC(4)—X and g: OC(B)—X, be
homeomorphisms defining U and V respectively as open cone neigh-
borhoods of x. Local compactness of X implies compactness of A and
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B. Hence we may assume that X=U=0C(4) and f is the identity.
We express each point of O0C(4) by (a, t), aE A4, t =0 with the under-
standing that 4 X0 is identified to x. The set 4 Xt is abbreviated to
A .. We do similarly for OC(B) and denote by U, and V, respectively
the compact sets Uy g A and Uy g, g(By). Observe that if £>0, there
exist ¢/, ¢'’>0 such that V, CU,and Us CV,.

1. We find five positive numbers p <g<r, s<t such that g(B,)
separates A, from A, and g(B;) separates A, from A4,. This is done
by a repeated use of the above observation.

2. There exists a homeomorphism %, of 4 X [p, ¢] onto 4 X [g, 7]
such that

ho(d, P) = (a) Q))
ho(a, @) = (a, 1),
hog(b, S) = g(b; t)'

In particular, there is a homeomorphism F of BX[1,2] into
A X [p, r] such that

F(b, 1) = g(b,s) and F(d, 2) = hog(s, s).

This can be easily seen as follows. Let U/ and V/ denote the sets
Uy zs A and CI(U— V,). We denote by ¢ a sufficiently small positive
number. There exists a homeomorphism k; of U onto itself such that
k1| U, JU/re=1and ki(a, g¢) =(a, 7). There exists a homeomorphism
k; of U onto itself such that kzl Veee\J Vire=1 and kog(b, s)=g(b, t).
There exists a homeomorphism k; of U onto itself such that k| U,_.
UU{+e=1 and ki(a, p) =(a, ¢). Let ko be the appropriate restriction
Of kakzkl.

3. Choose positive numbers u;, w; such that
= <r=um <wu < ---,
s=w << <w < - -

and
lim %; = limw; = + o,

4. Let H, be the identity map of Vy, This can be extended to a
homeomorphism H; of V., onto U,,\Jg(BX [s, t]).

5. Find a homeomorphism %, of 4 X [p, u1] onto 4 X [g, u,] which
is an extension of k¢ such that ki (a, 41) = (e, u.).

Let H; be an extension of H; which maps V., homeomorphically
onto U,,\Jmg(BX][s, t]). (H: can be chosen so that Hy(g(h, ws))
=hg(b, t), but this is not necessary.)
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6. Find a homeomorphism k; of 4 X [uo, uz] onto A X [ul, u3]
which is an extension of /| 4 X [, #:] such that ha(a, us) = (a, us).

Let H; be an extension of H, which maps V,, homeomorphically
onto U,,\Jhhg(BX [s, t]).

7. Similarly, ind Hy, Hs, - - - which define a homeomorphism of V
onto U which leaves V,, pointwise fixed.

3. Proof of Theorem 2.

The first part. Let M* and M'* be obtained from M and M’ by
shrinking Bd M and Bd M’ to points p and p’ respectively. By [2],
p and p’ have open cone neighborhoods homeomorphic to OC(Bd M)
and OC(Bd M’). Since M* and M'* are one-point compactifications
of homeomorphic spaces Int M and Int M’, there is a homeomor-
phism of M* onto M’* under which p is mapped into p’. By Theorem
1, OC(Bd M)=0C(Bd M’) with the vertices corresponding to each
other. After deleting the vertices, Bd M X E'=Bd M’'XE"

The second part. 1t follows that OC(Bd M)=O0C(B) with the ver-
tices of the cones corresponding. Hence, an examination of a set like
V.U, , where V, and U, are the sets defined in the proof of Theo-
rem 1 and s, p are positive numbers as in 2 of the proof of Theorem 1,
reveals the existence of a compact manifold ¥ with boundary such
that Bd Y is the disjoint union of B and Bd M and Y—B=Bd M
X [0, 1) with y&Bd M corresponding to yX0 and Y—Bd M=B
X [0, 1) with the points of B similarly corresponding.

We let M'=M\UY with MNY=Bd M. Then clearly, M’ is a
compact manifold with boundary B. That Int M’ is homeomorphic
to Int M follows from [2].

4. Proof of Theorem 3. Let fi: OC(4%)—X be homeomorphisms de-
fining U* as open cone neighborhoods of x. As in the proof of Theorem
1, A} denotes the subset {(a’, #)|a‘€4:} of OC(4%) and Uf
=U ts tfi(Af')-

We can find, one by one, positive numbers ¢,;, 2, j=1, 2, - -+ - such
that
1) U U:',.,. =U for each 1,

j
i “+1 i+, il

(2) U‘.’j C Ut.'+;.,~ - f (At,‘+1.j)
for each 7 and j, and
(3) U:;j C U:.'.j+1 - f.(A:.'.in)-

In what follows, Ut ., etc. will be denoted simply by U(3, j), etc.
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Clearly for any sequence j;1<j:< - - - of positive integers j,
UuG,j)="1U.

We will repeatedly use the method of the proof of Theorem 1.

Choose ji. Let H; be the identity map of U(1, ji). Choose j2>j1.
As in 2 and 5 of the proof of Theorem 1, we extend H; to a homeomor-
phism H, of U(1, j;) onto a compact set F, containing U(2, j2) and
contained in U?. The next step reveals the general step. Since
H.(f*(A(1, j2))) has a product neighborhood in U?, we extend H» to a
homeomorphism Hy of U! into U2 Consider the open cone neigh-
borhood V! defined by Hy f': 0C(A')—X. We find an integer j;>j; so
that U(3, jz—1) contains F,. We extend the homeomorphism
H,: V(1, j2)—F; to a homeomorphism Hj of V(1, j;) onto a compact
set F; containing U(3, j;) and contained in U® Using HJ, we define a
homeomorphism Hj, an extension of Ha, of U(1, j;) onto F;. In ex-
actly the same manner, we find H;, Hy, - - - and they together gen-
erate a homeomorphism, leaving U(1, ji) pointwise fixed, of U’ onto

U;Fi=T.

5. Remarks. As we mentioned earlier, we do not know of any com-
pact nonhomeomorphic manifolds B and B’ such that B X E'=B’ X E.
Although the nonexistence, if proved, would strengthen Theorem 2,
one might feel that such B and B’ exist. One possibility is that
L(7,1)XS*#L(7, 2) XS* for some n. Since L(7, 1) X E*=L(7,2) XE"
for n>2 by [3], Int(L(7, 1) X I*) =Int(L(7, 2) X I") for n>2. Hence,
by Theorem 2, L(7, 1) XS*1XE'=L(7, 2) XS*1XE' But the re-
maining question is whether L(7, 7) X.S*~! are homeomorphic.

Also in Theorem 3, we need not assume U to be the monotone
union. It suffices to assume that U}, i=1, 2, - - -, t>0, form a co-
final family in the collection of the compact subsets of U. Hence the
proof of Theorem 3 implies a result due to Stallings [4].

Finally, we wish to thank J. Andrews for a stimulating conversation
we had with him which incidentally was the start of the present work.
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