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whether we can take V=T, when T is A-projective. If this is found

possible, we shall have shown that the relative cohomology does re-

duce to the absolute cohomology when we take T = A.
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DIRECT PROOF OF THE BASIC THEOREM ON
MULTIPARTITE PARTITIONS

E. M. WRIGHT1

In what follows all small latin letters denote non-negative integers,

while N and Nm, are/-partite numbers, i.e. vectors or row-matrices of

/ dimensions whose components are non-negative integers. In par-

ticular, N= (»i, n2, ■ ■ • , My). We write qk(N) for the number of par-

titions of N into just k parts and rh(N) for the number of partitions

of N into just k different parts.

Let ir = ir(k) be a partition of k into A(l) parts 1, h(2) parts 2 and

so on, so that k= 23m mh(m). We write

8M = II {h(m)\mh^}-1
m

where, as usual, 0!= 1, and D(ir, N) lor the number of solutions of

Mm)

(1) A - 23 E t*Nm»

where the order of the Nma is relevant. Clearly

(2) D(ir,N) = t[D(ir,m).
•=i

Again, for | X\ <1,
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1 + 23 D(ir, n)X" = u (1 - A«*)-*<"*>.
n=l m

Hence, for any given ir, D(ir, n) can be readily evaluated.

These last facts give their value to the two results

(3) qk(N) = 23 H(t)D(t, N)
r(k)

and

(4) rk(N) = 23 (-Y)k-*h(-m)H(ir)D(ir, A).

In [l] I found relations between generating functions equivalent to

these and I exploited them to calculate qk(N) and rk(N) for small k

in [2J. The equalities (3) and (4) are, however, clearly enumerative

relations which have nothing essentially to do with /-partite numbers

and which should be capable of direct enumerative proof. Such a

proof I give here. While I could wish it simpler, it does give some in-

sight into the nature and significance of (3) and (4).

We write

P(k) = 23 ffW,     /*(*) = £ (-i)*-2A(m)2JW
»(*) T(i)

and prove first that

(5) P(k) = 1,

(6) m(1) = 1,       ß(k) = 0    (k > 1).

These are trivial, if we use generating functions. We have only to

expand both sides of (1 —A)_1 = exp{ — log (1 —A)} and of 1+A

= exp log (1+A) in ascending powers of X and equate coefficients of

A*. But our present aim excludes this approach. The following proofs

of (5) and (6) avoid the use of generating functions.

We use the elementary theory of the symmetric group of permuta-

tions on k elements. The order of this group is k\ and it can be split

up into classes of conjugate elements, each class corresponding to a

partition of k. The class corresponding to the partition ir of k (i.e.

all those permutations which can be expressed by h(m) cycles of

length m, etc.) has

klJl {h(m)\mh^)-x = k\H(ir)
m

members. Hence

kl =  23 k\H(ir).
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Dividing both sides by k\, we have (5).

A permutation which consists of a single cycle of length m is

positive or negative according asm-1 is even or odd. Hence every

permutation of the class corresponding to k is positive or negative

according as k— ^hm is even or odd. For k>\, there are as many

positive as negative permutations and so

k\p(k) = T, (-l)*-SA(m)¿!H(x) = 0,
x(k)

but p(l) = 1 obviously. Hence (6).

Let us suppose that h(m, t) of the Nms on the right of (1) are equal

to Nt so that

(7) N = £ ktNt,

where

kt = £ mh(m, t)
m

and all the Nt are different. Let Tr¡ = Trt(kt) be the partition of kt

which has h(m, t) parts equal to m. Then it separates into the parti-

tions

TTl + 1T2 +   •   ■   •   + TTr-

If, for a fixed m, we permute the Nms among themselves, we have

h(m)\/{h(m, 1)! • • • h(m, r)\\ different arrangements of the Nmt.

Hence the same k\, • • • , kT, Ni, ■ ■ • , Nr, tti, • • • , irr, give rise to

X(t!, •••,«■,) = u h(m)l/{h(m, 1)! • • • h(m, r)\)
m

different solutions of (1). We remark also that

r

ff(x)X(Ti,  ■  • • , Tr) - u H(*d-

Hence, corresponding to any one partition of N into k parts given by

(7), we have 1 on the left-hand side of (3) and on the right-hand side

£ H(t)X(ti, • • • , *,) = £ Ú Hfrt)
ir(fc) x(t)     (=1

= n e bm = n p(kt)
t-l  x,(*() 1=1

and this is 1 by (5).
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Similarly the contribution to the right-hand side of (4) is

£ (-l^OÄMXOri, • • • , *y) =   23   fi (-l)*'-SA(*"-,)2?(7Tt)
r(*) x(4)     <-l

= n   23  (-l)*«-2*(«-«>ff(ir,)
<-l r|C*i)

- n *«(*.)(~i
and this is 1 or 0 according as XI«-1 ^i is 1 or greater than 1, i.e.

according as all the Nm, are different or not. This is precisely the

condition for this partition to contribute 1 or 0 to the left-hand side

of (4).
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