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COMMUTATORS IN SEMI-SIMPLE ALGEBRAIC GROUPS

RIMHAK REE

Introduction. In [2] S. Pasiencier and H.-C. Wang proved that

every element in a complex semi-simple Lie group is a commutator.

The purpose of this note is to show that their method can be applied

to the case of semi-simple algebraic groups without any restriction on

the characteristic of the ground field. We shall prove the following

Theorem. In a connected semi-simple algebraic group defined over

an algebraically closed field, every element is a commutator.

For an additive analogue of the above theorem for semi-simple Lie

algebras, see [3], where the algebraic closedness of the ground field is

not assumed.

1. Notation and preliminary. We shall use the terminology and re-

sults in [l ]. Let G be a connected semi-simple algebraic group defined

over an algebraically closed field A, T a maximal torus of G, 23 a Borel

subgroup containing T, B" the unipotent part of 23, A the normalizer

of T in G, W=N/T the Weyl group, and X = X(T) the character

group of T.

The character group A is a free abelian group of finite rank n. The .

Weyl group W acts on X by

(1.1) (wX)(t).=> xi«"1**),

where co is an element in N representing w, and xGA, tET. Also, X

is equipped with a positive definite metric such that 2(x, a)/(a, a)

is an integer for any xGA and any root a. We shall normalize the

metric such that (a, a) is an even integer for any root a, so that

(x, a) is an integer for any xGA and any root a. For any root a, the

Weyl reflection wa: X—>A defined by wa(x) =X~2(x, «)(«. a)_1a be-

longs to W, and W is generated by the wa.

For each root a>0, there is a homomorphism ra: A—»23u of the

additive group of K into 23". Any element in B can be written

uniquely in the form ¡IJa Ta(xa), where tET, xaEK, and where the

product runs over all roots a>0 in the increasing order. For any

tET we have tTa(x)t~1'=Ta(a(t)x), and the commutator (ra(x), Tß(y))

can be written as a product IXr-yO3?) with y^a-\-ß. From this we

have

(1.2) Let ai, a2, • • • , au be all the positive roots in increasing order.
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For i^m^M, denote by Bum the group generated by the Tai(x), where

ai^am and xEK. Then B„ is a normal subgroup of Bu.

2. Main lemmas. An element tE T is said to be regular if a(t) 9*1

for all roots a. As in [2] our theorem follows from the following

three lemmas.

(2.1) Every element in G is conjugate to an element in B (cf. [l,

Exposé 6, p. 13]).

(2.2) // tE T is regular, then for any sEB", t and ts are conjugate in

B«.
(2.3) For any tE T there exists a regular toE T and an element uEN

such that w~Hoia = tot.

We shall prove (2.2) as the special case m= 1 of the following:

(2.2') Let am and Bum be as in (1.2). Let tE T be regular. Then for any

given sEBm there exists an element tiEB^ such that utu~l = ts.

If m>M, then (2.2') is trivially true. We shall prove (2.2') by

descending induction on m. Suppose m^M and that (2.2') is proved

for greater m. We can write s = ra(a)s', where a = am, and s'G-Bm+i-

From the regularity of / we have a(t)¿¿\, hence there exists bEK

such that a(t)~1b = a+b. By (1.2) the element s" = Ta(-b)s'Ta(b) is

clearly in 5*+i- Hence by the assumption of induction there exists

u'G¿C+i such that u'tu'~l = ts". Now it is easy to verify that u = ra(b)u'

satisfies utu~l = ts. Thus (2.2') is proved.

3. Proof of (2.3). In order to obtain clarity we shall state a theorem

of Kostant used in [2, p. 910].

(3.1) Let X9 = X®Q be the vector space over the field Q of rational

numbers derived from X by extending the coefficient domain. For wEW,

set Xf = {xGX9| w(x) =x\ and let X2 be the orthogonal complement of

X? in Xe. Then XQ = Xf®Xf, and X23=(w-l)X23=(w1-i)Xf.
The subspace X2 has a basis (o¡i, 0:2, • • • , am) consisting of roots such

that

(3.1.1) w = waiwai • ■ • wam.

Conversely, if w is given by (3.1.1) and if ai, a2, ■ ■ ■ , am are linearly

independent roots, then (a\, a2, • • • , am) is a basis of Xf- If a is a root

contained in X2, then

dim(waw - 1)X9 < dim(w - l)Xe.

Now let P be the set of all aEXQ such that (x, ex) is an integer for

any xGX. Clearly all the roots are in P. For any aEP and zEK*,

define t(a, z)ET by x(¿(«. z))=z(*,a), and denote by T(a) the group

of all t(a, z), where zEK*.
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(3.2) 2/ aEP is a linear combination of a\, a2, ■ ■ • , am in P with

coefficients in Q, then T(a)QT(a])T(a2) ■ ■ ■ T(am).

For the proof, let O^aEZ such that aa= 23a¿a< with aiEZ. For

any zGA*, find xGA* such that x° = z. Then

x(l(a, z)) = 2'".«) = n^<x,a",,) = x(llt(ai, x°\

Hence t(a, z) = JT¿ t(ait xai). This proves (3.2).

(3.3) If («i, a2, ■ ■ ■ , an) is a basis of X9 lying in P, then

T = T(ai)T(a2) ■ ■ ■ T(an).

For the proof, let (xi, X2> • • • , X«) be a basis of X. Then the «X«

matrix ((x¿, «/)) is nonsingular. Since A is algebraically closed, there

exist Z\, z2, ■ ■ ■ , z„EK* such that

II Z/(x'-0>° = Xi(t) (láil n)
3

for any given tET. Then t= JJy t(aj, z¡). Thus (3.3) is proved.

For any wE W and l ET deñne tw by tw = u~lta), where co is an element

in N representing w. Set V°~l =■ twt~l, and denote by Tw~l the group

of all tw~\ where tET.

(3.4) 2/ w is given by (3.1.1) with linearly independent roots ait a2l

• • • , am, then Tw~l=T(ay)T(a2) ■ ■ ■ T(am). Any tET™-1 can be

written in the form t = t'w~1, where t'ET™-1.

For any root a, we have (w_1 —l)a= 23w¿°;> with «¡GZ. Hence for

any zGA* and xGA, we have

x(t(a,z)w~l) = gC«x-x.«) = z(x,(«-_1-i)«)

= TLz^"^ = x ÍIP(«i, z<) J ,

where z, = 2"«. Hence t(a, z)w~1= JJ¿ t(pa, z¿). Since this is true for all

roots a and zGA*, we have, by (3.3), Tw-^T(ax)T(a2) • ■ ■ T(am).

On the other hand, by (3.1) there exists aEP such that (w~l— \)a

— nai with some nonzero integer n. Then t(a, z)10-1 = /(«,, z"). Since

zGA* and i are arbitrary, it follows that T(a{)T(a2) ■ ■ ■ T(am)

Ç_Tw~l. Actually, (3.1) implies that for the given a¡ one can take a in

PHA29. Then by (3.2) t(a, z)<ET(pn)T(as) ■ ■ ■ T(am) = T"-\ Thus

the second part of (3.4) is also proved.

Now we shall prove (2.3). Let tE T be given. By (3.3) tE T(aJ T(a2)

• • • T(am) lor some roots a\, a2, • • • , am, since Xe is spanned by the

roots. Let m be the least integer for which this is possible. Then by

(3.2) the roots «i, a2, ■ ■ ■ , am are linearly independent. Set

w = wa¡wa¡ ■ ■ ■ wam.
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Then by (3.4),

(3.5) t = t'»-1    with   t' E T(ai)T(a2) ■ ■ ■ T(am).

We shall show that

(3.6) oc(t') ^ 1

for any root a contained in (w— 1)X9. Suppose the contrary. Then

by (Li)

x(i'-—i) = (wa(wX) - x)t'

= (wx - X - 2(x, oc)(a, ot)-la)l'

= (wx - x)t' = xi/""1) = x(0

for all xGX. Hence t = t'w'~1, where we put w'= waw. By (3.1),

m' = dim(w'-V)XQ<dim(w-\)XQ = m. Hence by (3.1) and (3.4),

T"'-1=T(ßi)T(ß2) ■ ■ ■ T(ßm.) for some roots ft, ß2, ■ ■ ■ , ßm,. But

t = t'w'-1ETw'~l. This contradicts the minimality of m. Thus (3.6) is

proved.

For the element w, let X9 = X9©X9 be the decomposition given

in (3.1). We have (w- 1)X9 = X29. Let 71, 72, • • • , yk be all the roots

which are not in X29, and let 7< = 7,' +7/', where 7/ EXf, y-' GX9.

We shall show that if 21, z2, ■ ■ • , zkEK* are suitably chosen and if we

set /"= II/(c7,', Zi) with a nonzero integer c such that cylEP for

1 úiúk, then t0 = t't" is the desired element. It is clear that t"w~1= 1.

Hence by (3.5), t%~1 = t. Also for any root a in X9, a(t") = 1, hence by

(3.6) a(io)^l. Now for the roots yit l^i^k, we have

7i(io) = y,(0 n«y(w"Ti')-

Since 7j is not in X9, for each 7^ there exists an index j such that

(7>. C7j)?^0- Since X has infinitely many elements, one can take

Zi, z2, • • • , ZaG-K* such that 7¿(í0)^l for l^i^k. We have t = twa~x,

or co_1íow = íío. Thus (2.3) is proved.
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