COMMUTATORS IN SEMI-SIMPLE ALGEBRAIC GROUPS

RIMHAK REE

Introduction. In [2] S. Pasiencier and H.-C. Wang proved that every element in a complex semi-simple Lie group is a commutator. The purpose of this note is to show that their method can be applied to the case of semi-simple algebraic groups without any restriction on the characteristic of the ground field. We shall prove the following

THEOREM. In a connected semi-simple algebraic group defined over an algebraically closed field, every element is a commutator.

For an additive analogue of the above theorem for semi-simple Lie algebras, see [3], where the algebraic closedness of the ground field is not assumed.

1. Notation and preliminary. We shall use the terminology and results in [1]. Let G be a connected semi-simple algebraic group defined over an algebraically closed field K, T a maximal torus of G, B a Borel subgroup containing T, B^u the unipotent part of B, N the normalizer of T in G, W=N/T the Weyl group, and X=X(T) the character group of T.

The character group X is a free abelian group of finite rank n. The Weyl group W acts on X by

$$(1.1) (w\chi)(t) = \chi(\omega^{-1}t\omega),$$

where ω is an element in N representing w, and $\chi \in X$, $t \in T$. Also, X is equipped with a positive definite metric such that $2(\chi, \alpha)/(\alpha, \alpha)$ is an integer for any $\chi \in X$ and any root α . We shall normalize the metric such that (α, α) is an even integer for any root α , so that (χ, α) is an integer for any $\chi \in X$ and any root α . For any root α , the Weyl reflection $w_{\alpha} \colon X \to X$ defined by $w_{\alpha}(\chi) = \chi - 2(\chi, \alpha)(\alpha, \alpha)^{-1}\alpha$ belongs to W, and W is generated by the w_{α} .

For each root $\alpha > 0$, there is a homomorphism $\tau_{\alpha} \colon K \to B^{u}$ of the additive group of K into B^{u} . Any element in B can be written uniquely in the form $t \prod_{\alpha} \tau_{\alpha}(x_{\alpha})$, where $t \in T$, $x_{\alpha} \in K$, and where the product runs over all roots $\alpha > 0$ in the increasing order. For any $t \in T$ we have $t\tau_{\alpha}(x)t^{-1} = \tau_{\alpha}(\alpha(t)x)$, and the commutator $(\tau_{\alpha}(x), \tau_{\beta}(y))$ can be written as a product $\prod \tau_{\gamma}(z_{\gamma})$ with $\gamma \ge \alpha + \beta$. From this we have

(1.2) Let $\alpha_1, \alpha_2, \cdots, \alpha_M$ be all the positive roots in increasing order.

Received by the editors February 12, 1963.

For $1 \le m \le M$, denote by B_m^u the group generated by the $\tau_{\alpha_i}(x)$, where $\alpha_i \ge \alpha_m$ and $x \in K$. Then B_m^u is a normal subgroup of B^u .

- 2. Main lemmas. An element $t \in T$ is said to be regular if $\alpha(t) \neq 1$ for all roots α . As in [2] our theorem follows from the following three lemmas.
- (2.1) Every element in G is conjugate to an element in B (cf. [1, Exposé 6, p. 13]).
- (2.2) If $t \in T$ is regular, then for any $s \in B^u$, t and ts are conjugate in B^u .
- (2.3) For any $t \in T$ there exists a regular $t_0 \in T$ and an element $\omega \in N$ such that $\omega^{-1}t_0\omega = t_0t$.

We shall prove (2.2) as the special case m=1 of the following:

(2.2') Let α_m and B_m^u be as in (1.2). Let $t \in T$ be regular. Then for any given $s \in B_m^u$ there exists an element $u \in B_m^u$ such that $utu^{-1} = ts$.

If m > M, then (2.2') is trivially true. We shall prove (2.2') by descending induction on m. Suppose $m \le M$ and that (2.2') is proved for greater m. We can write $s = \tau_{\alpha}(a)s'$, where $\alpha = \alpha_m$, and $s' \in B^u_{m+1}$. From the regularity of t we have $\alpha(t) \ne 1$, hence there exists $b \in K$ such that $\alpha(t)^{-1}b = a + b$. By (1.2) the element $s'' = \tau_{\alpha}(-b)s'\tau_{\alpha}(b)$ is clearly in B^u_{m+1} . Hence by the assumption of induction there exists $u' \in B^u_{m+1}$ such that $u'tu'^{-1} = ts''$. Now it is easy to verify that $u = \tau_{\alpha}(b)u'$ satisfies $utu^{-1} = ts$. Thus (2.2') is proved.

- 3. **Proof of (2.3).** In order to obtain clarity we shall state a theorem of Kostant used in [2, p. 910].
- (3.1) Let $X^Q = X \otimes Q$ be the vector space over the field Q of rational numbers derived from X by extending the coefficient domain. For $w \in W$, set $X_1^Q = \{x \in X^Q \mid w(x) = x\}$ and let X_2^Q be the orthogonal complement of X_1^Q in X^Q . Then $X^Q = X_1^Q \oplus X_2^Q$, and $X_2^Q = (w-1)X_2^Q = (w^{-1}-1)X_2^Q$. The subspace X_2^Q has a basis $(\alpha_1, \alpha_2, \cdots, \alpha_m)$ consisting of roots such that

$$(3.1.1) w = w_{\alpha_1}w_{\alpha_2}\cdot\cdot\cdot w_{\alpha_m}.$$

Conversely, if w is given by (3.1.1) and if $\alpha_1, \alpha_2, \dots, \alpha_m$ are linearly independent roots, then $(\alpha_1, \alpha_2, \dots, \alpha_m)$ is a basis of $X_2^{\mathfrak{G}}$. If α is a root contained in $X_2^{\mathfrak{G}}$, then

$$\dim(w_{\alpha}w-1)X^{Q}<\dim(w-1)X^{Q}.$$

Now let P be the set of all $\alpha \in X^Q$ such that (χ, α) is an integer for any $\chi \in X$. Clearly all the roots are in P. For any $\alpha \in P$ and $z \in K^*$, define $t(\alpha, z) \in T$ by $\chi(t(\alpha, z)) = z^{(\chi, \alpha)}$, and denote by $T(\alpha)$ the group of all $t(\alpha, z)$, where $z \in K^*$.

(3.2) If $\alpha \in P$ is a linear combination of $\alpha_1, \alpha_2, \cdots, \alpha_m$ in P with coefficients in Q, then $T(\alpha) \subseteq T(\alpha_1) T(\alpha_2) \cdots T(\alpha_m)$.

For the proof, let $0 \neq a \in \mathbb{Z}$ such that $a\alpha = \sum a_i \alpha_i$ with $a_i \in \mathbb{Z}$. For any $z \in K^*$, find $x \in K^*$ such that $x^a = z$. Then

$$\chi(t(\alpha, z)) = z^{(\chi, \alpha)} = \prod_{i} x^{(\chi, a_{i}\alpha_{i})} = \chi\left(\prod_{i} t(\alpha_{i}, x^{a_{i}})\right).$$

Hence $t(\alpha, z) = \prod_i t(\alpha_i, x^{a_i})$. This proves (3.2).

(3.3) If $(\alpha_1, \alpha_2, \dots, \alpha_n)$ is a basis of X^Q lying in P, then

$$T = T(\alpha_1)T(\alpha_2)\cdot\cdot\cdot T(\alpha_n).$$

For the proof, let $(\chi_1, \chi_2, \dots, \chi_n)$ be a basis of X. Then the $n \times n$ matrix $((\chi_i, \alpha_j))$ is nonsingular. Since K is algebraically closed, there exist $z_1, z_2, \dots, z_n \in K^*$ such that

$$\prod_{i} z_{j}(x_{i},\alpha_{j}) = \chi_{i}(t) \qquad (1 \leq i \leq n)$$

for any given $t \in T$. Then $t = \prod_{j} t(\alpha_j, z_j)$. Thus (3.3) is proved.

For any $w \in W$ and $t \in T$ define t^w by $t^w = \omega^{-1}t\omega$, where ω is an element in N representing w. Set $t^{w-1} = t^wt^{-1}$, and denote by T^{w-1} the group of all t^{w-1} , where $t \in T$.

(3.4) If w is given by (3.1.1) with linearly independent roots α_1 , α_2 , \cdots , α_m , then $T^{w-1} = T(\alpha_1)T(\alpha_2)\cdots T(\alpha_m)$. Any $t \in T^{w-1}$ can be written in the form $t = t'^{w-1}$, where $t' \in T^{w-1}$.

For any root α , we have $(w^{-1}-1)\alpha = \sum n_i \alpha_i$ with $n_i \in \mathbb{Z}$. Hence for any $z \in K^*$ and $\chi \in X$, we have

$$\chi(t(\alpha, z)^{w-1}) = z^{(w\chi-\chi,\alpha)} = z^{(\chi,(w^{-1}-1)\alpha)}$$

$$= \prod_{i} z^{(\chi,n_i\alpha_i)} = \chi\left(\prod_{i} t(\alpha_i, z_i)\right),$$

where $z_i = z^{n_i}$. Hence $t(\alpha, z)^{w-1} = \prod_i t(\alpha_i, z_i)$. Since this is true for all roots α and $z \in K^*$, we have, by (3.3), $T^{w-1} \subseteq T(\alpha_1) T(\alpha_2) \cdots T(\alpha_m)$. On the other hand, by (3.1) there exists $\alpha \in P$ such that $(w^{-1} - 1)\alpha = n\alpha_i$ with some nonzero integer n. Then $t(\alpha, z)^{w-1} = t(\alpha_i, z^n)$. Since $z \in K^*$ and i are arbitrary, it follows that $T(\alpha_1) T(\alpha_2) \cdots T(\alpha_m) \subseteq T^{w-1}$. Actually, (3.1) implies that for the given α_i one can take α in $P \cap X_2^Q$. Then by (3.2) $t(\alpha, z) \in T(\alpha_1) T(\alpha_2) \cdots T(\alpha_m) = T^{w-1}$. Thus the second part of (3.4) is also proved.

Now we shall prove (2.3). Let $t \in T$ be given. By (3.3) $t \in T(\alpha_1)T(\alpha_2) \cdot \cdot \cdot T(\alpha_m)$ for some roots $\alpha_1, \alpha_2, \cdot \cdot \cdot \cdot, \alpha_m$, since X^Q is spanned by the roots. Let m be the least integer for which this is possible. Then by (3.2) the roots $\alpha_1, \alpha_2, \cdot \cdot \cdot \cdot, \alpha_m$ are linearly independent. Set

$$w = w_{\alpha_1} w_{\alpha_2} \cdot \cdot \cdot w_{\alpha_m}.$$

Then by (3.4),

$$(3.5) t = t'^{w-1} with t' \in T(\alpha_1)T(\alpha_2) \cdot \cdot \cdot T(\alpha_m).$$

We shall show that

$$(3.6) \alpha(t') \neq 1$$

for any root α contained in $(w-1)X^Q$. Suppose the contrary. Then by (1.1)

$$\chi(t'^{w_{\alpha}w-1}) = (w_{\alpha}(w\chi) - \chi)t'$$

$$= (w\chi - \chi - 2(\chi, \alpha)(\alpha, \alpha)^{-1}\alpha)t'$$

$$= (w\chi - \chi)t' = \chi(t'^{w-1}) = \chi(t)$$

for all $\chi \in X$. Hence $t = t'^{w'-1}$, where we put $w' = w_{\alpha}w$. By (3.1), $m' = \dim(w'-1)X^{Q} < \dim(w-1)X^{Q} = m$. Hence by (3.1) and (3.4), $T^{w'-1} = T(\beta_1)T(\beta_2) \cdot \cdot \cdot T(\beta_{m'})$ for some roots $\beta_1, \beta_2, \cdot \cdot \cdot, \beta_{m'}$. But $t = t'^{w'-1} \in T^{w'-1}$. This contradicts the minimality of m. Thus (3.6) is proved.

For the element w, let $X^Q = X_1^Q \oplus X_2^Q$ be the decomposition given in (3.1). We have $(w-1)X^Q = X_2^Q$. Let $\gamma_1, \gamma_2, \cdots, \gamma_k$ be all the roots which are not in X_2^Q , and let $\gamma_i = \gamma_i' + \gamma_i''$, where $\gamma_i' \in X_1^Q$, $\gamma_i'' \in X_2^Q$. We shall show that if $z_1, z_2, \cdots, z_k \in K^*$ are suitably chosen and if we set $t'' = \prod t(c\gamma_i', z_i)$ with a nonzero integer c such that $c\gamma_i' \in P$ for $1 \le i \le k$, then $t_0 = t't''$ is the desired element. It is clear that $t''^{w-1} = 1$. Hence by (3.5), $t_0^{w-1} = t$. Also for any root α in X_2^Q , $\alpha(t'') = 1$, hence by (3.6) $\alpha(t_0) \ne 1$. Now for the roots γ_i , $1 \le i \le k$, we have

$$\gamma_i(t_0) = \gamma_i(t') \prod_j z_j^{(\gamma_i, c\gamma_j, c')}$$

Since γ_i is not in X_2^Q , for each γ_i there exists an index j such that $(\gamma_i, c\gamma_j) \neq 0$. Since K has infinitely many elements, one can take $z_1, z_2, \cdots, z_k \in K^*$ such that $\gamma_i(t_0) \neq 1$ for $1 \leq i \leq k$. We have $t = t_0^{w-1}$, or $\omega^{-1}t_0\omega = tt_0$. Thus (2.3) is proved.

REFERENCES

- 1. C. Chevalley, Classification des groupes de Lie algébriques, Séminaire, École Normale Supérieure, Paris, 1956-1958.
- 2. S. Pasiencier and H.-C. Wang, Commutators in a complex semi-simple Lie group, Proc. Amer. Math. Soc. 13 (1962), 907-913.
- 3. Gordon Brown, On commutators in a simple Lie algebra, Proc. Amer. Math. Soc. 14 (1963), 763-767.

University of British Columbia, Vancouver, B. C., Canada