COMMUTATORS IN SEMI-SIMPLE ALGEBRAIC GROUPS
RIMHAK REE

Introduction. In [2] S. Pasiencier and H.-C. Wang proved that
every element in a complex semi-simple Lie group is a commutator.
The purpose of this note is to show that their method can be applied
to the case of semi-simple algebraic groups without any restriction on
the characteristic of the ground field. We shall prove the following

THEOREM. In a connected semi-simple algebraic group defined over
an algebraically closed field, every element is a commutator.

For an additive analogue of the above theorem for semi-simple Lie
algebras, see [3], where the algebraic closedness of the ground field is
not assumed. .

1. Notation and preliminary. We shall use the terminology and re-
sultsin [1]. Let G be a connected semi-simple algebraic group defined
over an algebraically closed field K, T a maximal torus of G, B a Borel
subgroup containing T, B* the unipotent part of B, N the normalizer
of T in G, W=N/T the Weyl group, and X=X(T) the character
group of T.

The character group X is a free abelian group of finite rank n. The .
Weyl group W acts on X by

(1.1) (wx) (1) = x(™ ),

where w is an element in N representing w, and xEX, tET. Also, X
is equipped with a positive definite metric such that 2(x, @)/(e, a)
is an integer for any x&X and any root a. We shall normalize the
metric such that (@, «) is an even integer for any root «, so that
(x, @) is an integer for any x X and any root . For any root «, the
Weyl reflection w,: X—X defined by w.(x) =x—2(x, @)(, )~ 'a be-
longs to W, and W is generated by the wa.

For each root >0, there is a homomorphism 7.: K—B* of the
additive group of K into B* Any element in B can be written
uniquely in the form tIL To(%.), where tET, x,EK, and where the
product runs over all roots >0 in the increasing order. For any
tET we have t14(x)t-1=7,(a(t)x), and the commutator (r4(x), 78(%))
can be written as a product |[7,(z,) with y=a+8. From this we
have

(1.2) Let oy, g, + + -, au be all the positive roots in increasing order.
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For 1=m = M, denote by B, the group generated by the 7.,(x), where
a;=am and xS K. Then By, is a normal subgroup of B®.

2. Main lemmas. An element t& T is said to be regular if a(f) %1
for all roots a. As in [2] our theorem follows from the following
three lemmas.

(2.1) Every element in G is conjugate to an element in B (cf. [1,
Exposé 6, p. 13]).

(2.2) If t&T is regular, then for any s& B®, t and ts are conjugate in
B,

(2.3) For any t< T there exists a regular to< T and an element W& N
such that w=tow =tot.

We shall prove (2.2) as the special case m=1 of the following:

(2.2") Let am and By, be as in (1.2). Let t& T be regular. Then for any
given sC By, there exists an element wC B, such that utu—'=ts.

If m> M, then (2.2') is trivially true. We shall prove (2.2') by
descending induction on m. Suppose m < M and that (2.2’) is proved
for greater m. We can write s=7.(a)s’, where a=am, and s'CBp,4,.
From the regularity of ¢ we have a(f) #1, hence there exists bDEK
such that a(t)~'b=a+b. By (1.2) the element " =7,(—b)s'7.(b) is
clearly in B},.,. Hence by the assumption of induction there exists
u' C B}, such that w'tu'—1=1s". Now it is easy to verify that u =7,(b)u’
satisfies utu—'=ts. Thus (2.2’) is proved.

3. Proof of (2.3). In order to obtain clarity we shall state a theorem
of Kostant used in [2, p. 910].

(3.1) Let X9=X®Q be the vector space over the field @ of rational
numbers derived from X by extending the coefficient domain. For wCS W,
set X2 = {xEX QI w(x) =x} and let X2 be the orthogonal complement of
XCin X9 Then X9=XY®X?, and X =(w—1)XF=(w'1—-1)X{.
The subspace X2 has a basis (cu, o, - - -, @) consisting of roots such
that

(3.1.1) W = WaWay * * * Way,
Conversely, if w is given by (3.1.1) and if an, a3, + + +, am are linearly
independent roots, then (o, oz, + + +, m) 25 @ basts of X8I fais a root
contained in X2, then

dim(w,w — 1) X9 < dim(w — 1)X9.

Now let P be the set of all «& X9 such that (x, @) is an integer for
any x©&X. Clearly all the roots are in P. For any «a EP and zEK*,
define t(a, 2) ET by x(t(e, 2)) =29, and denote by T(«) the group
of all ¢(e, 2), where zEK*.
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(3.2) If a &P is a linear combination of ay, s,  + + , 0m in P with
coefficients in @, then T(a) CT(cq)T(aws) - + + T'(ctm)-

For the proof, let 0%a € Z such that aa= Y _a,a; with a;EZ. For
any € K*, find x©€K* such that x*=2. Then

x([(a, z)) = z(x.a) = Hx(xtaiai) = X(Ht(a" xai).
ke [

Hence t(a, 2) = [ [+ t(ai, #). This proves (3.2).

(3.3) If (cu, s, - -+, ) 45 @ basis of X9 lying in P, then
T = T(a1)T(as) -+ + T(own).

For the proof, let (x1, X2, * * * , Xa) be a basis of X. Then the #Xn
matrix ((x;, ;)) is nonsingular. Since K is algebraically closed, there
exist 21, 22, + - -, 2,&K* such that

I1 2% = x:() 1=i=n
i

for any given t&T. Then t= []; t(a;, 2;). Thus (3.3) is proved.

For any wE W and (€ T define £ by ¥ = w™'w, where w is an element
in N representing w. Set t*~!=¢“t"!, and denote by T™~! the group
of all t»~1, where tcT.

(3.4) If wis given by (3.1.1) with linearly independent roots o, a,

c e, Qm, then T '=T(a1)T(c2) - - - T(am). Any t&T* ' can be
written in the form t=1""=1, where ' S T*1

For any root a, we have (w='—1)a= Y na; with n,E Z. Hence for
any zEK* and x& X, we have

x(t(a’ Z)w—‘l) = Z(WX_Xna) = Z(Xn(w_l"l)a)

I‘IZ"""""“) = X(Ht(a,-, Zi)) )

i

where z;=2z". Hence t(a, z)*"1= H; t(oes, 25). Since this is true for all
roots @ and 2&EK*, we have, by (3.3), 7% 1CT(a)T(c2) - - * T(atm).
On the other hand, by (3.1) there exists « =P such that (w!'—1)«a
=na; with some nonzero integer n. Then ¢(a, z)*~'=1{(a;, 2"). Since
2EK* and ¢ are arbitrary, it follows that T(ci)T(cz) + + - T(ctm)
C T+, Actually, (3.1) implies that for the given a; one can take a in
PNXE. Then by (3.2) t(e, 2)ET () T(@) - - + T(am)=T*". Thus
the second part of (3.4) is also proved.
Now we shall prove (2.3). Let t& T be given. By (3.3) t & T(a1) T (c)
-+« T(am) for some roots as, aa, * * * , m, since X< is spanned by the
roots. Let m be the least integer for which this is possible. Then by
(3.2) the roots a1, @, - * +, @ are linearly independent. Set

o

W= WqWay, * * * Wa



460 RIMHAK REE

Then by (3.4),

3.5 t=1¢"1 with ¢ E T(e))T(asz) -+ - T(am).
We shall show that
(3.6) a(t) # 1

for any root a contained in (w—1)X%. Suppose the contrary. Then
by (1.1)

x(#' =) = (wa(wx) — x)V
= (wx — x — 2(x, a)(a, @)~ la)V’
= (wx — ) = x({"") = x(¢)

for all x€X. Hence t=t'*"-1, where we put w’'=w,w. By (3.1),
m' =dim(w’ —1) X9 <dim(w—1)X?=m. Hence by (3.1) and (3.4),
T -1=T(BR)T(B:) - - + T(Bm) for some roots By, B2, - - +, Bm. But
t=¢»"-1& 71, This contradicts the minimality of m. Thus (3.6) is
proved.

For the element w, let X9=X2® X be the decomposition given
in (3.1). We have (w—1)X9=X. Let 1, 72, * - - , ¥« be all the roots
which are not in X, and let y;=+v! +v!’, where y! €EX?, v/’ €X&.
We shall show that if 2, 2, « + + , 2 K* are suitably chosen and if we
set " = [Jt(cy!, 2;) with a nonzero integer ¢ such that ¢y! &P for
1<: =<k, then to=1't" is the desired element. It is clear that ¢'"»-1=1.
Hence by (3.5), #27*=t¢. Also for any root a in X£, a(t"") =1, hence by
(3.6) a(to) #1. Now for the roots v;, 1 £1=k, we have

(veic7§0)
vilte) = v:(¢) 11z
i

Since v: is not in X2, for each v; there exists an index j such that
(vi, ¢y;)#£0. Since K has infinitely many elements, one can take
21, %2, - * +, ZEK* such that v,(t) #1 for 1<:<k. We have t=#"",
or wttww =tt,. Thus (2.3) is proved.
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