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1. Introduction. Suppose that X and Y are compact, and let

C(X) and C(Y) denote the Banach spaces of real-valued continuous

functions on X and Y. Letp be a function from X onto Y. If p admits

a continuous cross section q: Y—>X (i.e., g(y)Gp_1(y) for every y in

Y), then the adjoint map u: C(X)^>C(Y) of q, defined by

[«(/)] 60= My)),

is a continuous linear transformation from C(X) onto C( Y), satisfy-

ing the following condition for every/GG(X) and y<E.Y:

(l) inî(f[p-l(y)]) = [u(f)](y) = supOrTKy)]).2

The purpose of this note is to show that, even if p does not admit a

cross section, such a mapping u always exists, provided p is open and

X and Y are metrizable. That answers a question asked by Fred B.

Wright.

Theorem 1.1. Let X and Y be compact metric spaces, and p an open

map from X onto Y. Then there exists a continuous linear mapping u

from C(X) onto C(Y), satisfying (1) for every f EC {X) and y G Y.

The requirement that p be open cannot be dropped, as the follow-

ing example shows.

Example 1.2. Let X be the interval [0, 3], Y the interval obtained from

X by identifying all points in [l, 2], and p: X—>F the natural projec-

tion. IffEC(X) is 0 on [0, l] and 1 on [2, 3], then there exists no pos-

sible u(f)EC(Y) satisfying (1).
I don't know whether metrizability of X and Y in Theorem 1.1

can be weakened to Hausdorff, but would like to conjecture that it

can't.

2. Proof of Theorem 1.1. Our proof is based on the following

lemma, which was essentially proved in [3] or [4].
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1 Note that any linear u: C(X)—>C(Y) which satisfies (1) is automatically con-

tinuous (with norm 1) and onto (since, for any gEC(Y), u(g op) must be g).
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Lemma 2.1. Let Y be a paracompact space, F a complete metrizable

locally convex space, and </>: Y—>2F lower semi-continuous.3 Then there

exists a continuous h: Y—>F such that

h(y) E (conv(<Ky)))-

for every yE Y.

Proof. If every (¡>(y) is closed and convex, this is asserted in [3,

Theorem 3.2] or [4, Theorem l].4 In general, define \p: F—>2F by

\p(y) = (conv(<j)(y)))~. Then \p is also lower semi-continuous [3, Proposi-

tions 2.3 and 2.6], and we may apply the above selection theorem to

y¡/. That completes the proof of the lemma.

Let us now prove Theorem 1.1. Denote the Banach space C(X) by

E, let E* be its dual space, and let S* be the unit sphere of E*. Then

5* is a compact convex subset of E*, equipped with the topology <r of

pointwise convergence on E. By identifying each xEX with the ele-

ment xES* defined by x(f) =f(x), we may consider X as a subset of

(S*,a).

Since X is compact metric, E has a countable dense subset A [2,

(7.4.4)]. Since S* is equicontinuous, a coincides on S* with the

topology a' of pointwise convergence on A [l, p. 29, Proposition 3].

Now (E*, a') is first-countable, and hence metrizable. Denoting the

completion of (E*, a') by F, we therefore see that F is a complete

metrizable locally convex space; moreover, F contains the compact

(and hence closed) convex subset (S*, a) = (S*, a'), and this set con-

tains X.

Define 0: F—>2* by <j>(y) =p~1(y). Since p is open, 0 is lower semi-

continuous. Applying Lemma 2.1, we obtain a continuous h: Y—*F

such that

h(y) C (convfofJO))-

for every yEY. Now h is not a cross section for p, since its range is

not even contained in X. However, h(y)ES*EE* for all yEY, so

we may still take u to be the adjoint of h, defined by

Hf)](y) = f(h(y))

for fEC(X) and yEY. This u is clearly linear and satisfies (1), and

hence (as noted in footnote 2) is continuous and onto. That completes

the proof.

! Le., {yEY\4{y)r\V9£0\ is open in F for every open VEF.
* The results in [3] and [4] are actually stated only for Banach spaces F, but, as

remarked on page 364 of [3], the proof in [3] remains valid (without change) under

our weaker assumptions.
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3. Generalizations. Theorem 1.1 can be generalized in two direc-

tions. In the first place, C(X) and C(Y) can be replaced by C(X, B)

and C(Y, B), where B is any Banach space, provided (1) is changed to

(2) [«(/)](y) G («mvCrtr1«]))-

Moreover, if B is a complex Banach space (in particular, the complex

numbers), then u may be chosen complex-linear. For separable B,

this result is proved just as is Theorem 1.1, except that the dual of

C(X) is replaced by the space of bounded linear transformations from

C(X, B) to B (real or complex, as the case may be). If B is not separa-

ble, the proof becomes more complicated, and will be given in [5].

The other direction for generalizing Theorem 1.1 is to require only

that X and Y be metric spaces (not necessarily compact) and that

each ¿>-1(y) is complete. In this case, C(X) and C(Y) denote the

spaces of all continuous real-valued functions on X and Y, with the

compact-open topology. (As a matter of fact, this result also remains

true with C(X) and C(Y) replaced by C(X, B) and C(Y, B), as

above.) The proof will be given in [5],

References

1. N. Bourbaki, Topologie générale. Chapter X, Hermann, Paris, 1949.

2. J. Dieudonné, Foundations of modern analysis, Academic Press, New York,

1960.
3. E. Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361-382.

4. -, Selected selection theorems, Amer. Math Monthly 63 (1956), 233-238.

5. -, Three mapping theorems, Proc. Amer. Math. Soc. 15 (1964), 410-415.

University of Washington

■


