
THREE MAPPING THEOREMS

E. MICHAEL1

1. Introduction. In this paper we prove the following three theo-

rems on metric spaces, each of which is needed in the proof of its

successor. They deal with embeddings, continuous selections, and

linear mappings between function spaces.

Theorem 1.1. Every metric space X can be embedded isometrically

in a Banach space Bx so that, if F is any complete locally convex topo-

logical linear space, then every continuous a: X—>F can be extended to

a linear à: BX-">F which is continuous on (X and on) the closed convex

hull of every compact subset of X.2

Theorem 1.1 should be compared with the Markoff-Kakutani em-

bedding of X in the free locally convex space Ex generated by X,

where any continuous a: X-^F (F locally convex) can be extended

to a linear â: Ex—+F which is continuous on all of Ex- In Theorem 1.1,

where we require Bx to be a Banach space, we cannot in general

expect á to be continuous on all of Bx (even if we demand only

homeomorphic embedding of X in Bx). In fact, the essential unique-

ness of Ex would then imply that the linear span of X in Bx is iso-

morphic to Ex; since Ex is generally not metrizable, this is generally

impossible.

The following result, whose proof depends on Theorem 1.1, is the

first example of a selection theorem where the range is—at least par-

tially—nonmetrizable. Except for a slightly stronger requirement on

the domain X, it generalizes Theorem 3.2" of [4], which is also used

in the proof.

Theorem 1.2. Let X be metrizable,3 and M a metrizable subset of a

locally convex space F such that the closed convex hull of every compact

subset of M is compact. Let <f>: X—=>2M be lower semi-continuous* and

Received by the editors February 23, 1963.

1 Supported by an N.S.F. contract.

1 This theorem is true for either real or complex linear spaces and transformations.

Moreover, â is actually continuous on the closed symmetric (resp. circled) convex

hull of every compact KEX.
s "Metrizable" may here be weakened to "paracompact è-space," where X is

called a k-space if a subset of X is closed whenever its intersection with every compact

set is closed. (Metrizable spaces and locally compact spaces are ¿-spaces.) I don't

know whether "metrizable" may actually be weakened to "paracompact."

4 I. e., each </>(*) is nonempty, and {xtX: 4>{x)(~\V9é 0} is open in X for every

open VEM.
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suppose that, for some metric on M, every <p(x) is complete. Then there

exists a continuous f: X—>F such that, for every xEX,

f(x) G (conv <p(x))-.

In fact, f may even be chosen so that, for every compact K EX,

f(K) C (conv K')-

for some compact K'EU {<j>(x): xEK}.

We use Theorem 1.2 to prove Theorem 1.3 below, which deals with

linear mappings between function spaces. A special case of Theorem

1.3 was obtained in [7] as a simple application of a known selection

theorem [4, Theorem 3.2"], but the proof of Theorem 1.3 in its

present generality seems to require the full force of Theorem 1.2.

Theorem 1.3. Let X and Y be metric spaces, and p an open mapping

from X onto Y such that p~l(y) is complete for every y G Y. Let E be a

complete6 locally convex space, and let C(X, E) and C(Y, E) be the

spaces of continuous functions from X and Y to E, with the topology of

compact convergence. Then there exists a continuous linear6 mapping u

from C(X, E) onto C(Y, E) such that

(i) [«(/)] (y) G (convC/lr'Cy)]))-

for every fEC(X, E) and yE Y.

It was shown in [7] that the requirement that p be open cannot be

dropped, even if X and Y are compact, and E = R. The following ex-

ample shows why we cannot dispense with every p~l(y) being com-

plete.

Example 1.4. Let p be a continuous, open map from a metric space

X onto a compact metric space Y, such that no compact subset of X is

mapped onto Y [5, Example 4.1]. Then no u:C(X, R)—rC(Y, R)

(linear or not) which satisfies (1) can be continuous.

2. Proof of Theorem 1.1. Let E = C(X) denote the space of con-

tinuous, real-valued functions on X, with the topology of compact

convergence, and let E* be its dual space with the topology <x(E*, E)

of pointwise convergence on E. Similarly, let F* be the dual space of

F, with the topology of compact convergence on F, and let F** be its

dual space with the topology a(F**, F*) of pointwise convergence on

F*. Now if a: X—*F is continuous, let a*: F*—!>E be its (continuous,

linear) adjoint, defined by

5 It suffices if the closed, convex hull of every compact subset of E is compact.

s Complex linear if £ is a complex linear space.
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«*(/)= /o«,   fe f*,

and let a**:E*—*F** be the (continuous, linear) adjoint of a*, de-

fined by

a**(<¡>) = 0 0a*,      (j>EE*.

We can embed A" in £* in the usual fashion, by identifying each

xEX with the element xEE* defined by x(/)=/(x). On the other

hand, since the closed convex hull of every compact subset of the

complete, locally convex space F is compact [l, p. 8], the Mackey-

Arens theorem [2, Theorem 2, p. 68] implies that each element of

F** is of the form y(f) =f(y) with yEF, and we may therefore iden-

tify F** with F, equipped with the topology a(F, F*) of pointwise

convergence on F*. With these identifications, we see that a**: E*—*F

is a linear extension of a: X—*F which is continuous with the topology

a(F, F*) on F.

Let T denote the original topology on F. If KEX is compact,

then a(K) is r-compact in F, and hence so is its r-closed convex hull

a(K)r. Thus t and the coarser topology a(F, F*) coincide on a(K)T,

and a(K)T is also the a(F, 7?*)-closed convex hull of a(K). Hence, if

K" denotes the o(E*, £)-closed convex hull of K in E*, then a**(K")

Ea(K)T, and a**| A'" is continuous with respect to t on F.

To complete the proof, we will define a norm on E* such that

(1) The norm coincides with the given metric on XEE*.

(2) If KEX is compact, the norm-topology agrees with a(E*, E)

on K".

Suppose such a norm were obtained. Since K" is an equicontinuous,

pointwise bounded, <r(£*, £)-closed set of functionals on E, Alaoglu's

theorem implies that K" is a(E*, £)-compact. It therefore follows

from (2) that K" is norm-compact, and hence is also the norm-closed

convex hull of K in E*. Moreover, if Bx is the completion of the

normed space E*, then K"EE* is also the norm-closed convex hull

of K in Bx. We may therefore take the desired à: Bx—>F to be any

linear extension (no continuity required) of a** over Bx-

It remains to define the required norm on E*. To do that, let F

be any metric space containing X (isometrically as a closed set) and

one point y0EX, and let d be the metric on F. For K S;0, let Lipx(A)

denote the set of all fEC(X) which, after defining f(yo) =0, satisfy

\f(x) -f(y)\   ÚKd(x,y)

for all x, yE Y. Let Lip(A) = UXao Lipx(Z), and if /GLip(A), let

11/11 =min{A:/GLiPx(X)}.
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With this norm, Lip(Z) becomes a normed linear space, and we let D

denote its dual space, with the usual norm

¡«Il = sup { | <*,(/) | : ||/||ál}

for <pED.
If A denotes the set of bounded elements of Lip(X), then A is a

subalgebra of C(X) which separates points and contains the constant

functions, and is therefore (along with all of Lip(X)) dense in C(X)

(with the topology of compact convergence!) by the Stone-Weier-

strass theorem. Moreover, each element of E*, considered as a func-

tional on Lip(X), is clearly continuous on Lip(X), which permits us to

identify E* with a subspace of D. Let us show that the norm which

E* thus inherits from D satisfies our requirements (1) and (2).

(1) Let Xi, XiEX. Then ||*i — x2\\ ̂ d(xh x2) from the definition.

On the other hand, if g(x)=d(x, x2) — d(y0, x2) for every xEX, then

gGLipi(X) and (xi — x2)(g) =d(xlt x2), so that ||*i — x2\\ ̂ d(xi, x2).

(2) For m^O, Lip„(X) is an equicontinuous, pointwise bounded,

closed subset of C(X), and is therefore compact in C(X) by Ascoli's

theorem. Now let K EX be compact. Since the norm topology on E*

is the topology of uniform convergence on the compact sets Lipn(X),

it must coincide on the equicontinuous (with respect to C(X)) set

K" with the topology <r(E*, Lip(X)) of pointwise convergence on

Lip(X) [2, Proposition 5, p. 23], and hence also (remembering that

Lip(Z) is dense in C(X)( = E)) with <r(E*, E) [2, Proposition 5,

p. 23]. That completes the proof.

We conclude with two remarks. First, it was shown in [6] that,

with the embedding of X in Bx described in our proof, X is actually

closed in the linear subspace which it algebraically spans in Bx-

Second, our theorem remains true (although perhaps not very useful)

for uniform spaces X, provided "isometrically" is replaced by "uni-

formly," and "Banach space" by "complete locally convex space."

3. Proof of Theorem 1.2. We begin by applying Theorem 1.1 of

[S] to obtain an upper semi-continuous7 9: X-^2M and a lower semi-

continuous \J/: X-+2M such that \{/(x) E0(x) E4>(x) for all xEX, and

such that both \p(x) and d(x) are compact for all xEX.

Embed M isometrically in a Banach space Bm with the property

of Theorem 1.1. Theni/' maybe regarded as a lower semi-continuous

function from X to the nonempty subsets of Bm, so by [4, Theorem

3.2" and footnote 7] there exists a continuous g: X—*BM such that

7 I.e., each 6{x) is nonempty, and {xeX: 0(x)EV} is open in X for every open

VEM.
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g(x) E (conv yp(x))~

for every xEX. Let a: M—>M be the identity map, let F be the com-

pletion of F, and let ä: BM—*F be as in Theorem 1.1. Define/: X—+F

by

f = äog,

and let us show that this / satisfies our requirements.

Let K EX be compact. Since 6 is upper semi-continuous and each

d(x) is compact, 0(A) ( = U \6(x): xEK}) must be compact in M by

[3, Corollary 9.6]. For any SEM, let SB (resp. SF) denote the closed

convex hull of S in BM (resp. F). Then à is continuous on 6(K)B by

Theorem 1.1, and 6(K)F is compact (by assumption) and so coincides

with the closed convex hull of 6(K) in F, so that â(6(K)B)=6(K)F.

Now g(K)E9(K)B, so / is continuous on K and f(K)E&(K)FEF.

Since/|K is continuous for every compact KEX, and X is metriza-

ble, / must be continuous on X. That completes the proof.

4. Proof of Theorem 1.3. Let L = £(C(X, E), E) denote the space

of continuous linear transformations from C(X, E) to E, with the

topology of pointwise convergence. Then X can be homeomorphically

embedded in L by identifying each xGX with x, where x(f) =f(x) for

all/GC(A, E). If KEX is compact, then K is an equicontinuous sub-

set of L, so (since E is complete) its closed convex hull in L is compact

[l.p.81].
Define <¡>: F—>2X by <p(y) =p~1(y) for every yE Y. Since £ is open,

4> is lower semi-continuous. We may therefore apply Theorem 1.2

(with X replaced by Y, M by X, and F by L) to obtain a continuous

g: F—»L such that, for every compact KEY,

(4.1) ç(A) G (conv K')-

for some compact K' C U (<£(y): y G A}. In particular, g(y)

G (conv <£(y))- for every y G Y.

Now let m: C(X, E)-^C(Y, E) be defined by

W(f)](y) = [<?(?)](/)•
Then m is clearly linear, and satisfies condition (1) of Theorem 1.3.

This implies that u is onto, for if gGC(F, E), then g o pEC(X, E)

and u(g o p) —g. To see that u is continuous, let A be a compact sub-

set of F, and V a closed convex neighborhood of 0 in E; we must find

a compact subset K' of X such that [m(/)](A) C V whenever

fEC(X, E) and/(A') CF. However, the set K' appearing in (4.1)

has precisely this property, and that completes the proof.
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5. Proof of Example 1.4. If m were continuous, there would exist a

compact K EX such that / sufficiently small on K implies

(5.1) | [«(/)](y) |  <1

for all yE Y. However, for any such K there exists a yoG Y—p(K),

and if we pick fEC(X, R) to be 0 on K and 2 on p-1(yo),then [u(f)](y0)

= 2, and hence/ fails to satisfy (5.1). This implies that m cannot be

continuous.
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A SHORT PROOF OF THE ARENS-EELLS
EMBEDDING THEOREM

E. MICHAEL1

In this note, we give a short proof of the following theorem of

R. Arens and J. Eells.

Theorem. Every metric space can be embedded isometrically as a

closed, linearly independent subset of a normed linear space.

Proof. Observe first that it suffices if one can always find an

isometric, linearly independent embedding. For if M is any metric

space, and if its completion M* is thus embedded in a normed linear

space E, then M* (being complete) is closed in E, so that M is closed
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1 Supported by an N.S.F. contract.


