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Addendum (March 8, 1963). It was pointed out to me by H. R. Pitt

that a different proof of the prime number theorem based on log n\

and using Wiener's theorem was given by A. E. Ingham, Some Tau-

berian theorems connected with the prime number theorem, J. London

Math. Soc. 22 (1945), 161-180.
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FLAG-TRANSITIVE PLANES OF EVEN ORDER1

R. ROTH

1. Introduction. In a projective plane a configuration consisting of

a line and a point incident with that line is called a flag. A collinea-

tion group which is transitive on the flags of a projective plane is

called flag-transitive (or "acutely transitive"). Such a group is also

called sharply flag-transitive (or "flag-regular" or "acutely regular") if

in addition, the only collineation leaving a flag fixed is the identity.

A projective plane is called flag-transitive or sharply flag-transitive,

respectively, if it admits a group of collineations which is flag-transi-

tive or sharply flag-transitive, respectively. D. G. Higman and J. E.

McLaughlin proved the following theorem [6, Proposition 10,

p. 391].

Theorem. Given a finite projective plane of odd order n with a flag-

transitive group G where n is not a square or else n — m2 and m=—\

(mod 4). Then the plane is Desarguesian and the group G is doubly

transitive.

In this paper, this theorem is extended to finite projective planes of

many orders n. It is shown (Theorem 1) that for any integer n such

that either « + 1 or M2-f-M+l is a prime, a flag-transitive plane of

order n must be Desarguesian or sharply flag-transitive. However, as
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was already shown in [6], if n is the order of a sharply flag-transitive

plane, then w2+« + l must be a power of a prime (Theorem 2). Thus

a contradiction is reached for many integers n unless the flag-transi-

tive plane is Desarguesian, or, if n is not a power of a prime, non-

existent. In addition it is shown that if w2+w + l is not a power of a

prime and n is not a square, then a plane of order n with a flag-transi-

tive group is Desarguesian.

The work in this paper does not require n to be even, but the re-

sults give little information for odd orders of n not already given by

the theorem of Higman and McLaughlin.

It is known that a doubly transitive finite plane is Desarguesian

(Theorem 5 in [7, p. 191]) and conjectured that a transitive plane is

Desarguesian. Flag-transitivity is stronger than transitivity but

weaker than double transitivity. Thus, short of proving that all

transitive planes are Desarguesian, it would be desirable to prove that

all flag-transitive planes are Desarguesian. The theorem of Higman

and McLaughlin quoted and this paper thus represent partial solu-

tions of this problem.

2. Main results.

Theorem 1. Given a finite plane of order n where either w2+« + l or

n +1 is a prime and given G a flag-transitive collineation group for the

plane. Then G is either doubly transitive or contains a subgroup which

is sharply flag-transitive.

Corollary. A flag-transitive plane of order n satisfying the above

conditions is either Desarguesian or sharply flag-transitive.

The corollary is immediate from the theorem, since as was just

noted, a doubly transitive projective plane is Desarguesian.

For the proof, a number of theorems on permutation groups will be

used, [l 1 ] is a useful reference.

Definition. A permutation group is called regular if it is transitive

but no element other than the identity fixes any letters.

Proposition 1 (Frobenius' Theorem). Given a permutation group

G which is transitive but the only element fixing two letters is the identity.

Then the elements which displace all the letters, together with the identity,

form a normal regular subgroup M (see [5, p. 292]). We call a non-

regular permutation group satisfying the above hypotheses a Frobenius

group. If Gp is the subgroup fixing one letter P then G = GpM.

Proposition 2 (Burnside's Theorem). Every nonsolvable transi-

tive group of prime degree is doubly transitive.
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See [ll, Theorem 11.7, p. 36 (and also p. 85)]. A proof was given

by Schur [8] and is essentially reproduced in [l, p. 234].

Proposition 3 (Theorem of Galois). Given a transitive permuta-

tion group on p letters where p is prime. G is then solvable if and only if

any element fixing two letters is the identity.

For the proof see [ll, p. 35] (see also [9, §60]). We can now pro-

ceed to the proof of Theorem 1.

Case I. n2-\-n-\-\=p is a prime. By Proposition 2 applied to the

transitive group G we see that G is either doubly transitive or solvable.

If it is doubly transitive, that is one of the desired conclusions. If not,

it is solvable, so by Proposition 3, only the identity can fix as many

as two points. However, G is not regular (it is flag-transitive so there

are nontrivial elements fixing a point) hence is a Frobenius group;

i.e., it is a group to which Proposition 1 applies nontrivially. By

Proposition 1, G has a normal regular subgroup M. G = GpM where

Gp is the subgroup of G fixing a point P. By flag-transitivity of G,

Gp is transitive on the n +1 lines through P. We regard GP as a transi-

tive permutation group on the » + 1 lines through P and note that no

collineation in Gp fixes two of these lines for it would then fix at

least two points and contradict the fact that G is a Frobenius group.

(A collineation of a finite plane fixes the same number of points as

lines. See [5, p. 400].) Thus Gp is either regular or a Frobenius group

(on the ra + 1 lines). If it is a Frobenius group call the normal regular

subgroup H. If Gp is already regular let H=Gp. Then H M is a sub-

group of GpM=G (since M is normal), and H M is sharply flag-

transitive. Q.E.D.

Case II. M + l is a prime. Consider the representation of Gp as a

transitive permutation group on the w + 1 lines through P. We may

assume that it is a faithful representation for if not, there is some

nontrivial collineation in GpEG fixing all the lines through P. It is

thus a central collineation and G is a transitive group containing a

central collineation. By a theorem of Wagner (see [10, Theorem 3,

p. 122]) the plane is Desarguesian and G contains the (doubly transi-

tive) little projective group.

Hence applying Proposition 2 to Gp represented faithfully as a

transitive group on the w + 1 lines through P we see that Gp is either

doubly transitive or solvable. If Gp is doubly transitive on the « + 1

lines through P, it is easy to show that G (being transitive on the

points) is doubly transitive on all the lines. It is well known that G is

therefore doubly transitive on the points (see, for example [7, corol-

lary to Lemma 2, p. 193]).
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Suppose instead that Gp is solvable. Again, Proposition 3 shows

that no element of Gp fixes two lines, so Gp is either a regular group

or a Frobenius group (on the w + 1 lines). If Gp is regular, set H=Gp.

If it is a Frobenius group let H be the regular normal subgroup of

Gp (applying Proposition 1). Now G itself is a Frobenius group

(represented on all the points) since no element can fix two points,

for otherwise such an element would fix two lines intersecting in a

point Q and Gq would have an element fixing two lines. Gq and Gp

are isomorphic ; however, Gp has no element fixing two lines, by the

above. So applying Proposition 1 to G we see that G has a normal

regular subgroup M. Then H M is a sharply flag-transitive subgroup

of G. Q.E.D.
The next theorem is included in and weaker than Proposition 4 of

[6, p. 387]. The proof in that paper uses an important new deep re-

sult of Thompson: In a Frobenius group G the normal regular sub-

group M is nilpotent. The theorem here is proved without Thomp-

son's result.

Theorem 2. A sharply flag-transitive group is a Frobenius group and

moreover the normal regular subgroup M is elementary abelian of prime

power order so that w2+« + l is a power of a prime.

Proof. Clearly, a sharply flag-transitive group is a Frobenius

group since it is transitive (but not regular) and any element leaving

fixed two points would leave fixed the line joining them, thus would

fix an incident point-line pair and be the identity. A theorem of

Frobenius (see [4], see also [ll, Theorem 11.8, p. 36] for statement

but not proof) states that the regular normal subgroup of a primitive

Frobenius group is elementary abelian. Since Higman and McLaugh-

lin proved in [6, Proposition 3, p. 386] that any flag-transitive group

is primitive as a permutation group on the points we may apply the

above theorem. Thus M is elementary abelian, hence has prime power

order which is equal to n2-\-n-\-\, the number of points operated on

by the group.

Theorem 3. If w2+w + l is not a power of a prime then a flag-

transitive group is nonsolvable.

Proof. We apply Theorem 11.5 of [ll]: If N is a minimal normal

subgroup of a primitive group G and N is solvable then N is regular

and elementary abelian. Hence the degree of G is a power of a prime.

As mentioned in the proof of Theorem 2, a flag-transitive group is

primitive as a permutation group on the points. Thus if a flag-

transitive group is solvable, then w2+w + l is a power of a prime.

Q.E.D.
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For the corollary we need a theorem of W. Feit and J. G. Thomp-

son unpublished at the time of this writing (see [3]). It states that

any nonsolvable group is of even order.

Corollary. 2/ «2+w+l is not a power of a prime and n is not a

square then a plane of order n with a flag-transitive group is Desargue-

sian.

Proof. By Theorem 3, G is nonsolvable. By the above, G is thus

of even order. Hence it has an involution which must be a central

collineation since n is not a square [5, Theorem 20.9.7]. Thus G is a

transitive group with a central collineation, hence the plane is

Desarguesian [10, Theorem 3].

3. Applications. We can now apply these theorems to show that a

flag-transitive plane must be Desarguesian for many orders n. One

line of reasoning is the following: If « + 1 is a prime then by the

corollary to Theorem 1 (Case II) the plane is Desarguesian or sharply

flag-transitive. But if «2+« + l is not a power of a prime, Theorem 2

shows that the plane is not sharply flag-transitive. Of course, then if

n itself is not a power of a prime, no such plane exists. For instance,

if « = 36, then « + 1 = 37, and «2+w + l = 1333 = 31-43, so there are
no flag-transitive planes of order 36. The same argument works for

«=10, 28, 40, 52, 58, 60, 72, 82, 88, 96, 100. Moreover a similar argu-
ment shows that for «=16, a flag-transitive plane must be Desargue-

sian.

Another way of applying these theorems makes use of a result of

Evans and Mann (see [2]) that if w is the order of a cyclic plane and

«^ 1600, then « is a power of a prime. Now if «2+« + l is a prime, the

corollary to Theorem 1 (Case I) shows that a flag-transitive plane of

order « is sharply flag-transitive (if not Desarguesian) and Theorem 2

says that it must possess an elementary abelian regular collineation

group of prime order «2+« + l which is therefore cyclic. Hence if « is

not a power of a prime, no flag-transitive plane of order « exists (here

«^1600). For example, if « = 20, «2+w + l=421, a prime, so no

flag-transitive plane exists for « = 20. Similarly no flag-transitive

plane exists for « = 12, 24, 50, 80, 90. For the case «=18, we have

« + 1 = 19, so a flag-transitive plane of order 18 would be sharply

flag-transitive, which is a contradiction as pointed out in [6, p. 393].

Hence there are no flag-transitive planes of order « = 18.

The corollary to Theorem 3 shows that for many other integers a

flag-transitive plane must be Desarguesian (for example, « = 26,

«2+«+1 = 703 = 19-37). These theorems may thus be applied to

show that for all even «^100, with the possible exception of « = 64,
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a flag-transitive plane of order n must be Desarguesian. Values of n

for which the Bruck-Ryser theorem [5, Theorem 20.8.3, p. 394]

shows that no projective planes of order n exist are, of course, excluded.
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