
i964] THE ARENS-EELLS EMBEDDING THEOREM 415

5. Proof of Example 1.4. If m were continuous, there would exist a

compact K EX such that / sufficiently small on K implies

(5.1) | [«(/)](y) |  <1

for all yE Y. However, for any such K there exists a yoG Y—p(K),

and if we pick fEC(X, R) to be 0 on K and 2 on p-1(yo),then [u(f)](y0)

= 2, and hence/ fails to satisfy (5.1). This implies that m cannot be

continuous.
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A SHORT PROOF OF THE ARENS-EELLS
EMBEDDING THEOREM

E. MICHAEL1

In this note, we give a short proof of the following theorem of

R. Arens and J. Eells.

Theorem. Every metric space can be embedded isometrically as a

closed, linearly independent subset of a normed linear space.

Proof. Observe first that it suffices if one can always find an

isometric, linearly independent embedding. For if M is any metric

space, and if its completion M* is thus embedded in a normed linear

space E, then M* (being complete) is closed in E, so that M is closed
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in the subspace EM of E which it spans algebraically (since

M=EMr\M*).
So let X be any metric space. Let F be a metric space (with

metric d) which contains X and one point yoG-^- Let Lip(F) denote

the set of all real-valued functions/ on F such that/(y0) =0 and, for

some K¡z0,

|/(*) -f(y)\   ÛKd(x,y), x,yE Y;

denote the smallest K which works for such an/ by ||/||. This makes

Lip(F) into a (complete) normed linear space. Let E be its dual, with

the usual norm

IMI=sup{|*(/)|:||/||i£l}.

Define h: X-+E by h(x) = x, where x(f)=f(x) for all/GLip(F).2

To see that h is an isometry, let x\, x2EX. Then ||*i—¿E2|| ád(xi, x2)

from the definitions. On the other hand, if g(y)=d(y, x2)—d(y0, x2)

for all yEY, then gGLip(F), ||g|| = 1, and (x1 — x2)(g)=d(x1, x2), so

that ||ii — x2\\ 2?d(xi, x2).

To see that h(X) is linearly independent in E, let Xi, • • • , xn+x be

distinct elements of X. Then xn+i cannot be a linear combination of

xi, ■ ■ ■ , xn, for if g(y)=d(y, {y0, xh ■ ■ ■ , x„}) for yEY, then

gGLip(F), and Xi, • • ■ , xn all vanish at g while xn+1 does not. That

completes the proof.

The author is grateful to V. L. Klee for some helpful conversations.
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