5. Proof of Example 1.4. If u were continuous, there would exist a compact $K \subset X$ such that f sufficiently small on K implies

for all $y \in Y$. However, for any such K there exists a $y_0 \in Y - p(K)$, and if we pick $f \in C(X, R)$ to be 0 on K and 2 on $p^{-1}(y_0)$, then $[u(f)](y_0)$ = 2, and hence f fails to satisfy (5.1). This implies that u cannot be continuous.

REFERENCES

- 1. N. Bourbaki, Espaces vectoriels topologiques, Chapters I and II, Hermann, Paris, 1953.
- 2. ——, Espaces vectoriels topologiques, Chapters III and IV, Hermann, Paris,
- 3. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182.
- Continuous selections. I, Ann. of Math. (2) 63 (1956), 361-382.
 A theorem on semi-continuous set-valued functions, Duke Math. J. 26 (1959), 647-652.
- 6. —, A Short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc. 15 (1964), 415-416.
- 7. ——, A linear mapping between function spaces, Proc. Amer. Math. Soc. **15** (1964), 407-409.

University of Washington

A SHORT PROOF OF THE ARENS-EELLS EMBEDDING THEOREM

E. MICHAEL1

In this note, we give a short proof of the following theorem of R. Arens and J. Eells.

THEOREM. Every metric space can be embedded isometrically as a closed, linearly independent subset of a normed linear space.

PROOF. Observe first that it suffices if one can always find an isometric, linearly independent embedding. For if M is any metric space, and if its completion M^* is thus embedded in a normed linear space E, then M^* (being complete) is closed in E, so that M is closed

Received by the editors February 7, 1963.

¹ Supported by an N.S.F. contract.

416 E. MICHAEL

in the subspace E_M of E which it spans algebraically (since $M = E_M \cap M^*$).

So let X be any metric space. Let Y be a metric space (with metric d) which contains X and one point $y_0
otin X$. Let Lip(Y) denote the set of all real-valued functions f on Y such that $f(y_0) = 0$ and, for some $K \ge 0$,

$$|f(x) - f(y)| \le Kd(x, y), \qquad x, y \in Y;$$

denote the smallest K which works for such an f by ||f||. This makes Lip(Y) into a (complete) normed linear space. Let E be its dual, with the usual norm

$$\|\phi\| = \sup\{ |\phi(f)| : \|f\| \le 1 \}.$$

Define $h: X \to E$ by $h(x) = \bar{x}$, where $\bar{x}(f) = f(x)$ for all $f \in \text{Lip}(Y)$.

To see that h is an isometry, let $x_1, x_2 \in X$. Then $||\tilde{x}_1 - \tilde{x}_2|| \leq d(x_1, x_2)$ from the definitions. On the other hand, if $g(y) = d(y, x_2) - d(y_0, x_2)$ for all $y \in Y$, then $g \in \text{Lip}(Y)$, ||g|| = 1, and $(\tilde{x}_1 - \tilde{x}_2)(g) = d(x_1, x_2)$, so that $||\tilde{x}_1 - \tilde{x}_2|| \geq d(x_1, x_2)$.

To see that h(X) is linearly independent in E, let x_1, \dots, x_{n+1} be distinct elements of X. Then \bar{x}_{n+1} cannot be a linear combination of $\bar{x}_1, \dots, \bar{x}_n$, for if $g(y) = d(y, \{y_0, x_1, \dots, x_n\})$ for $y \in Y$, then $g \in \text{Lip}(Y)$, and $\bar{x}_1, \dots, \bar{x}_n$ all vanish at g while \bar{x}_{n+1} does not. That completes the proof.

The author is grateful to V. L. Klee for some helpful conversations.

REFERENCE

1. R. F. Arens and J. Eells, Jr., On embedding uniform and topological spaces, Pacific J. Math. 6 (1956), 397-403.

University of Washington

² Although defined quite differently, this embedding seems to be closely related to that constructed in [1].